Answer:
The work done is 360 J.
Explanation:
Given that,
Mass = 50 kg
Distance =3 m
We need to calculate the work done
The work done is equal to the product of force and displacement.
Using formula of work done


Where, F = force
D = distance
θ = Angle between force and displacement
Put the value into the formula


Hence, The work done is 360 J.
<span>High SchoolPhysics5+3 pts</span><span>Instructions:Drag the tiles to the correct boxes to complete the pairs. Match each term with its definition. Tiles conductor radiation insulator convection conduction Pairs heat transfer involving direct contact of particles arrowBoth heat transfer in fluids arrowBoth heat transfer that doesn’t need a medium arrowBoth substance that doesn’t allow heat through arrowBoth substance that allows heat through arrowBoth
These are the answers:
</span>Conductor - <span>substance that allows heat through
</span>Radiation - <span> heat transfer that doesn’t need a medium
</span>Insulator - <span>substance that doesn’t allow heat through
</span>Convection - <span>heat transfer in fluids
Conduction - </span>heat transfer involving direct contact of particles
-3 m/s
---------
per min
oh I think 8m/s to 3m/s to 0m/s
idk probably -0.08
Answer:
the center of mass is 7.07 cm apart from the bend
Explanation:
the centre of mass of a wire of length L is L/2 ( assuming uniform density). Then initially the x coordinate of the centre of mass is
x₁ = L/2 = 20 cm /2 = 10 cm
when the wire is bent in a right angle the coordinates of the new centre of mass will be
x₂ = L₂/2
y₂= L₂/2
where L₂ is the length of the horizontal piece and vertical piece . Then L₂=L/2
x₂ = L₂/2 = L/4 = 20 cm/4 = 5 cm
y₂= L₂/2 = L/4 = 20 cm/4 = 5 cm
x₂=y₂=X
locating the bend in the origin (0,0) the distance to the centre of mass is
d = √(x₂²+y₂²) = √(2X²) = √2*X=√2*5cm = 7.07 cm
d = 7.07 cm
Answer:
Mass
Explanation:
Inertia is essentially an object's tendency to stay in motion or at rest unless it is forced to do otherwise (pun intended). It only makes sense to me that mass would best quantify an object's inertia, because an object with more mass would be harder to move and/or stop from moving.