Answer:
T=C*P*V
Explanation:
It is said that a variable - let's call 'y' -, is proportional to another - let's call it 'x' - if x and y are multiplicatively connected to a constant 'C'. It means that their product (x*y) can be always equaled to the constant 'C' or their division (
) can be always equaled to 'C'. The first case is the case of the inverse proportionality: It is said that x and y are inversely proportional if

The second case is the case of the direct proportionality: It is said that x and y are directly proportional if
: x is directly proportional to y.
or
: y is directly proportional to x.
Always that any text does not specify about directly or inversely proportionality, it is assumed to mean directly automatically.
For our case, we are said that the temperature T is proportional to the pressure P and the volume V (we assume that it means directly); it is a double proportionality but follows the same rules:
If T were just proportional to P, we would have:

If T were just proportional to V, we would have:

As T is proportional to both P and V, the right equation is:

In order to isolate the temperature, let's multiply (P*V) at each side of the equation:

Inelastic.
If it was elastic, they'd bump right off each other. But since they've been locked, or stuck together, this is inelastic.
Answer:
Finally current will be
i = 0.35 A
Explanation:
As we know that power of the bulb is given by the formula

now we have

R = 240 ohm
so we have


now the current in the bulb is given as


now when length of the filament is double
so the resistance of the wire also gets double
so we have



now the current in the bulb is given as



Answer:
The change in the equilibrium melting point is 4.162 K.
Explanation:
Given that,
Pressure = 10 kbar
Molar volume of copper
Volume of liquid
Latent heat of fusion 
Melting point =1085°C
We need to calculate the change temperature
Using Clapeyron equation

Put the value into the formula



Hence, The change in the equilibrium melting point is 4.162 K.
Answer:
No. of laps of Hannah are 7 (approx).
Solution:
According to the question:
The total distance to be covered, D = 5000 m
The distance for each lap, x = 400 m
Time taken by Kara, 
Time taken by Hannah, 
Now, the speed of Kara and Hannah can be calculated respectively as:


Time taken in each lap is given by:



t = 500 s
So, Distance covered by Hannah in 't' sec is given by:


No. of laps taken by Hannah when she passes Kara:

≈ 7 laps