Lucite has a refractive index of n=1.50. This means that the speed of the light in lucite is decreased according to:

where

is the speed of light in air. Putting the number in the formula, we find that the speed of light in lucite is

The frequency of the light is

, so now we can calculate the wavelength in lucite by using the formula:

<span>Therefore, the correct answer is (2) 393 nm.</span>
Explanation:
Below is an attachment containing the solution.
<h2>Answer: at an angle

below the inclined plane.
</h2>
If we draw the <u>Free Body Diagram</u> for this situation (figure attached), taking into account only the gravity force in this case, we will see the weight
of the block, which is directly proportional to the gravity acceleration
:

This force is directed vertically at an angle
below the inclined plane, this means it has an X-component and a Y-component:



Therefore the correct option is c
Explanation:
(a) Displacement of an object is the shortest path covered by it.
In this problem, a student is biking to school. She travels 0.7 km north, then realizes something has fallen out of her bag. She travels 0.3 km south to retrieve her item. She then travels 0.4 mi north to arrive at school.
0.4 miles = 0.64 km
displacement = 0.7-0.3+0.64 = 1.04 km
(b) Average velocity = total displacement/total time
t = 15 min = 0.25 hour

Hence, this is the required solution.
Starting from the angular velocity, we can calculate the tangential velocity of the stone:

Then we can calculate the angular momentum of the stone about the center of the circle, given by

where
m is the stone mass
v its tangential velocity
r is the radius of the circle, that corresponds to the length of the string.
Substituting the data of the problem, we find