answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mylen [45]
2 years ago
15

Two billiard balls, assumed to have identical mass, collide in a perfectly elastic collision. Ball A is heading East at 12 m/s.

Ball B is moving West at 8.0 m/s. Determine the post-collision velocities of Ball A and Ball B.
Physics
1 answer:
meriva2 years ago
5 0

Answer:

Ball A will move towards West with speed 8 m/s

Ball B will move towards East with speed 12 m/s

Explanation:

As we know that during collision there is no external force on the system

So here we can use momentum conservation for finding the final velocities of two balls

so we have

m_1v_{1i} + m_2v_{2i} = m_1v_{1f} + m_2v_{2f}

since two balls are identical so we have

m_1 = m_2

m(12) - m(8) = mv_1 + mv_2

v_1 + v_2 = 4

also we know that for elastic collision we have

v_{2f} - v_{1f} = v_{1i} - v_{2i}

so we have

v_2 - v_1 = 12 - (-8)

v_2 - v_1 = 20

so we have

v_2 = 12 m/s Towards East

v_1 = 8 m/s Towards West

You might be interested in
Somewhere in the vast flat tundra of planet Tehar, a projectile is launched from the ground at an angle of 60 degrees. It reache
Nina [5.8K]

Answer:

R = 0.0503 m

Explanation:

This is a projectile launching exercise, to find the range we can use the equation

       R = v₀² sin 2θ / g

How we know the maximum height

      v_{f}² =v_{oy}² - 2 g y

      v_{f}= 0

      v_{oy} = √ 2 g y

      v_{oy} = √ 2 9.8 / 15

      v_{oy} = 1.14 m / s

Let's use trigonometry to find the speed

    sin θ = v_{oy} / vo

    vo = v_{oy} / sin θ

    vo = 1.14 / sin 60

    vo = 1.32 m / s

We calculate the range with the first equation

     R = 1.32² sin(2 60) / 30

    R = 0.0503 m

3 0
2 years ago
A 450g mass on a spring is oscillating at 1.2Hz. The totalenergy of the oscillation is 0.51J. What is the amplitude.
Volgvan

Answer:

A=0.199

Explanation:

We are given that  

Mass of spring=m=450 g==\frac{450}{1000}=0.45 kg

Where 1 kg=1000 g

Frequency of oscillation=\nu=1.2Hz

Total energy of the oscillation=0.51 J

We have to find the amplitude of oscillations.

Energy of oscillator=E=\frac{1}{2}m\omega^2A^2

Where \omega=2\pi\nu=Angular frequency

A=Amplitude

\pi=\frac{22}{7}

Using the formula

0.51=\frac{1}{2}\times 0.45(2\times \frac{22}{7}\times 1.2)^2A^2

A^2=\frac{2\times 0.51}{0.45\times (2\times \frac{22}{7}\times 1.2)^2}=0.0398

A=\sqrt{0.0398}=0.199

Hence, the amplitude of oscillation=A=0.199

4 0
2 years ago
An object that weighs 2.450 N is attached to an ideal massless spring and undergoes simple harmonic oscillations with a period o
Viktor [21]

Answer:

Spring constant, k = 24.1 N/m

Explanation:

Given that,

Weight of the object, W = 2.45 N

Time period of oscillation of simple harmonic motion, T = 0.64 s

To find,

Spring constant of the spring.

Solution,

In case of simple harmonic motion, the time period of oscillation is given by :

T=2\pi\sqrt{\dfrac{m}{k}}

m is the mass of object

m=\dfrac{W}{g}

m=\dfrac{2.45}{9.8}

m = 0.25 kg

k=\dfrac{4\pi^2m}{T^2}

k=\dfrac{4\pi^2\times 0.25}{(0.64)^2}

k = 24.09 N/m

or

k = 24.11 N/m

So, the spring constant of the spring is 24.1 N/m.

6 0
2 years ago
What force would be needed to accelerate a 0.040-kg golf ball at 20.0 m/s?
Naily [24]

Answer:

any amount of force will do it as time is not mentioned here

5 0
2 years ago
A lightning bolt transfers 6.0 coulombs of charge from a cloud to the ground in 2.0 x 10-3 second. what is the average current d
AlladinOne [14]
The current is defined as the amount of charge transferred through a certain point in a certain time interval:
I= \frac{Q}{\Delta t}
where
I is the current
Q is the charge
\Delta t is the time interval

For the lightning bolt in our problem, Q=6.0 C and \Delta t= 2.0 \cdot 10^{-3}s, so the average current during the event is
I= \frac{Q}{\Delta t} = \frac{6.0 C}{2.0 \cdot 10^{-3} s}=3000 A
4 0
2 years ago
Other questions:
  • Hey guys I really really need help with this question for ASAP! Explain what chart junk is and how it differs from the kind of i
    13·2 answers
  • Gold and silicon are mutually insoluble in the solid state and form a eutectic system with a eutectic temperature of 636 k and a
    8·1 answer
  • A roller of radius 12.5 cm turns at 14 revolutions per second. What is the linear velocity of the roller in meters per second?
    11·2 answers
  • The gravitational field of m1 is denoted by g1. Enter an expression for the gravitational field g1 at position la in terms of m1
    14·1 answer
  • A light wave has a 670 nm wavelength in air. Its wavelength in a transparent solid is 420 nm.
    5·1 answer
  • You set a tuning fork into vibration at a frequency of 723 Hz and then drop it off the roof of the Physics building where the ac
    5·1 answer
  • a water heater has a power rating of 1 kW. how many seconds will this heater take to boil 1 liter of water?
    9·1 answer
  • A disk of known radius and rotational inertia can rotate without friction in a horizontal plane around its fixed central axis. T
    7·1 answer
  • Three cars (car F, car G, and car H) are moving with the same velocity when the driver suddenly slams on the brakes, locking the
    6·1 answer
  • A trumpet player on a moving railroad flatcar moves toward a second trumpet player standing alongside the track both play a 490
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!