<u>Answer</u>:
pairing of the copper which has an electron affinity of 0.34 and the silver which has an electron affinity of 0.80 makes a strong battery.
<u>Explanation</u>:
All the Batteries of this world are made with two metals having different-different electron affinities. What do the phrase “electrons affinities ” mean and how do these affinities affect the voltage of the batteries?
The Electron affinities are the energy change that occurs when electrons are added to atoms. The greater the attraction of the atoms to the electrons the more energy would released. If an atom has high electron affinity, the electron will be harder to gain The greater is the difference in metal affinities, the greater the voltage. That means, if you pair Coppers with Silver, the difference between their electron affinities would be (0.80-0.34) or, 0.46 and You can make a strong battery.
Given that,
Current = 4 A
Sides of triangle = 50.0 cm, 120 cm and 130 cm
Magnetic field = 75.0 mT
Distance = 130 cm
We need to calculate the angle α
Using cosine law




We need to calculate the angle β
Using cosine law




We need to calculate the force on 130 cm side
Using formula of force



We need to calculate the force on 120 cm side
Using formula of force


The direction of force is out of page.
We need to calculate the force on 50 cm side
Using formula of force


The direction of force is into page.
Hence, The magnitude of the magnetic force on each of the three sides of the loop are 0 N, 0.1385 N and 0.1385 N.
Answer
The answer and procedures of the exercise are attached in the following archives.
Step-by-step explanation:
You will find the procedures, formulas or necessary explanations in the archive attached below. If you have any question ask and I will aclare your doubts kindly.
Answer:
T = 480.2N
Explanation:
In order to find the required force, you take into account that the sum of forces must be equal to zero if the object has a constant speed.
The forces on the boxes are:
(1)
T: tension of the rope
M: mass of the boxes 0= 49kg
g: gravitational acceleration = 9.8m/s^2
The pulley is frictionless, then, you can assume that the tension of the rope T, is equal to the force that the woman makes.
By using the equation (1) you obtain:

The woman needs to pull the rope at 480.2N
We are given: Final velocity (
)=20 m/s .
Time t= 2.51 s and
distance s = 82.9 m.
We know, equation of motion

Let us plug values of final velocity, and time in above equation.


Subtracting 2.51a from both sides, we get
-----------equation(1)
Using another equation of motion

Plugging values of vi =20-2.51a, t=2.51 and distnace s=82.9 in this equation.
We get,

Now, we need to solve it for a.
20-20+2.51a=165.8a.
-163.29a=0
a=0.
So, the acceleration would be 0 m/s^2.