Answer:
2 x 10⁻³ volts
Explanation:
B = magnetic of magnetic field parallel to the axis of loop = 1 T
= rate of change of area of the loop = 20 cm²/s = 20 x 10⁻⁴ m²
θ = Angle of the magnetic field with the area vector = 0
E = emf induced in the loop
Induced emf is given as
E = B
E = (1) (20 x 10⁻⁴ )
E = 2 x 10⁻³ volts
E = 2 mV
Answer:
I believe the answer for this question is D
Explanation:
I hope this helps and is correct
<span>Most objects tend to contain the same numbers of positive and negative charge because this is the most stable situation. In fact, if an object has an excess of positive charge, it tends to attract an equal number of negative charges to balance this effect and restore neutrality: the attracted negative charges combine with the excess of positive charges, leaving the object electrically neutral.</span>
Answer:
Current, I = 1000 A
Explanation:
It is given that,
Length of the copper wire, l = 7300 m
Resistance of copper line, R = 10 ohms
Magnetic field, B = 0.1 T

Resistivity, 
We need to find the current flowing the copper wire. Firstly, we need to find the radius of he power line using physical dimensions as :




r = 0.00199 m
or

The magnetic field on a current carrying wire is given by :



I = 1000 A
So, the current of 1000 A is flowing through the copper wire. Hence, this is the required solution.
Answer: the brand of paper towel
Explanation: the independent variable is the one you control in an experiment. the dependent variable would be the amount of water in the paper towel