Answer:
Here's what I get
Explanation:
A. Distance between A and B.
h = -½gt²
The stones go faster the farther they fall.
Stone A has already reached 5 m when B is released.
When B reaches 5 m, A has dropped further and is falling even faster.
The distance between the stones increases with time.
Figure 1 shows this effect in a graph of height vs. time.
B. Speed of Stone B
v² = 2gh =2 × ( -9.81 m·s⁻²) × (-5 m) = 98.1 m·s⁻²
v = 9.9 m/s
The stone is travelling at 9.9 m/s when it reaches 5 m.
C. Velocity vs time
v = -gt
Both stones accelerate at the same rate.
When Stone B has reached 10 m at time t, Stone A is falling much faster.
Fig. 2 shows this in a graph of velocity vs time.
Could be very slow since they’re basically going against the current which is hard so will be going slow
I'll give just one. The eruption of Mount Tambora in 1815 was one of the volcanic eruptions with widespread damage. Mount Tambora erupted, bringing thermal waves and tsunamis that killed 38,000 people (estimated). It is not just the tsunami and thermal waves, but also the ash plume that caused a cool down on the earth's atmosphere by 5°C causing "The Year Without Summer" and caused crops worldwide to fail, or degrade causing famine. That is all I know :) have a good day.
Answer:

Explanation:
The strain is defined as the ratio of change of dimension of an object under a force:

where
is the change in length of the object
is the original length of the object
In this problem, we have
and
, therefore the strain is

Answer:
529.15 m/s
Explanation:
h = Maximum height = 70000 m
g = Acceleration due to gravity = 2 m/s²
m = Mass of sulfur
As the potential and kinetic energies are conserved

The speed with which the liquid sulfur left the volcano is 529.15 m/s