To solve this problem we will start from the definition of energy of a spring mass system based on the simple harmonic movement. Using the relationship of equality and balance between both systems we will find the relationship of the amplitudes in terms of angular velocities. Using the equivalent expressions of angular velocity we will find the final ratio. This is,
The energy of the system having mass m is,

The energy of the system having mass 2m is,

For the two expressions mentioned above remember that the variables mean
m = mass
Angular velocity
A = Amplitude
The energies of the two system are same then,



Remember that

Replacing this value we have then


But the value of the mass was previously given, then



Therefore the ratio of the oscillation amplitudes it is the same.
A pesticide is something that is used to kill / deter pests that eat / destroy crop.
Answer:
Relative population is 2.94 x 10⁻¹⁰.
Explanation:
Let N₁ and N₂ be the number of atoms at ground and first excited state of helium respectively and E₁ and E₂ be the ground and first excited state energy of helium respectively.
The ratio of population of atoms as a function of energy and temperature is known as Boltzmann Equation. The equation is:
= 
= 
Here g₁ and g₂ be the degeneracy at two levels, K is Boltzmann constant and T is equilibrium temperature.
Put 1 for g₁, 3 for g₂, -19.82 ev for (E₁ - E₂) and 8.6x10⁵ ev/K for K and 10000 k for T in the above equation.
= 
= 3.4 x 10⁹
= 2.94 x 10⁻¹⁰
Answer:
The acceleration of the cart is 1.0 m\s^2 in the negative direction.
Explanation:
Using the equation of motion:
Vf^2 = Vi^2 + 2*a*x
2*a*x = Vf^2 - Vi^2
a = (Vf^2 - Vi^2)/ 2*x
Where Vf is the final velocity of the cart, Vi is the initial velocity of the cart, a the acceleration of the cart and x the displacement of the cart.
Let x = Xf -Xi
Where Xf is the final position of the cart and Xi the initial position of the cart.
x = 12.5 - 0
x = 12.5
The cart comes to a stop before changing direction
Vf = 0 m/s
a = (0^2 - 5^2)/ 2*12.5
a = - 1 m/s^2
The cart is decelerating
Therefore the acceleration of the cart is 1.0 m\s^2 in the negative direction.
Part b is equal to F in standards of society and it’s quality of math during the 1900s
(That was a bit of Social Studies lol)