answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alona [7]
1 year ago
15

Now assume that the boat is subject to a drag force fd due to water resistance. is the component of the total momentum of the sy

stem parallel to the direction of motion still conserved?
Physics
2 answers:
gogolik [260]1 year ago
6 0

No

<h2>Further Explanation </h2>

The law of conservation of momentum states that "if there is no external force acting on the system, then the total momentum just before is equal to the total momentum after the collision". when using this equation, we must pay attention to the direction of the speed of each object.

The law of conservation of momentum is one of the basic laws in physics. This law states that "the total momentum of two objects before the collision is the same after a collision". This statement implies that the total momentum value when objects collide is constant or unchanged. To understand this law, we can begin by understanding Newton's Third Law of Action and Reaction.

The force acting on each colliding object occurs over a period of time. Regardless of the length of time the force contact occurs, this time interval is the same for object 1 and object 2. This means that the time interval between the workings of the forces from object 1 to object 2 is the same as the time interval for the workforce of object 2 to object 1.

As a consequence of the forces acting on the two objects are equal/opposite direction and the time interval between the occurrence of the force is also the same, then the impulse that occurs on the two objects is the same value and opposite direction.

From the theory of impulse-momentum change, that the impulse that occurs in an object is the same as its momentum change. Thus, because every object experiences an impulse that is equally large and opposite in direction, then logically each object also experiences changes in momentum that are as large and opposite.

Learn more

 The law of conservation of momentum brainly.com/question/3262217

Details

Grade:  High School

Subject:  Physics

keywords: Momentum, impulse.

DochEvi [55]1 year ago
4 0
Based on the given details with this question, I can say that the direction of motion is not conserved. This is because the boat is subjected to an external force because of water resistance. So, the answer for this question would be NO.
You might be interested in
A roller coaster car drops a maximum vertical distance of 35.4 m. Determine the maximum speed of the car at the bottom of that d
marissa [1.9K]

Answer:

The maximum speed of the car at the bottom of that drop is 26.34 m/s.

Explanation:

Given that,

The maximum vertical distance covered by the roller coaster, h = 35.4 m

We need to find the maximum speed of the car at the bottom of that drop. It is a case of conservation of energy. The energy at bottom is equal to the energy at top such that :

mgh=\dfrac{1}{2}mv^2

v=\sqrt{2gh}

v=\sqrt{2\times 9.8\times 35.4}

v = 26.34 m/s

So, the maximum speed of the car at the bottom of that drop is 26.34 m/s. Hence, this is the required solution.

8 0
1 year ago
a. For a spring-mass oscillator, if you double the mass but keep the stiffness the same, by what numerical factor does the perio
Katena32 [7]

Answer:

a) factor b=\sqrt{2}

b) factor b=\frac{1}{2}

c) factor b=1

d) factor b=1

Explanation:

Time period of oscillating spring-mass system is given as:

T=\frac{1}{f}

T={2\pi} \sqrt{\frac{m}{k} }

where:

f= frequency of oscillation

m= mass of the object attached to the spring

k= stiffness constant of the spring

a) <u>On doubling the mass:</u>

  • New mass, m'=2m

<u>Then the new time period:</u>

T'=2\pi\sqrt{\frac{m'}{k} }

T'=2\pi\sqrt{\frac{2m}{k} }

T'=\sqrt{2}\times  2\pi\sqrt{\frac{m}{k} } }

T'=\sqrt{2} \times T

where the factor b=\sqrt{2} as asked in the question.

b) On quadrupling the stiffness constant while other factors are constant:

New stiffness constant, k'=4k

<u>Then the new time period:</u>

T'=2\pi\sqrt{\frac{m}{k'} }\\\\T'=2\pi\sqrt{\frac{m}{4k} }\\\\T'=\frac{1}{2} \times  2\pi\sqrt{\frac{m}{k} } }\\\\T'=\frac{1}{2} \times T

where the factor  b=\frac{1}{2}  as asked in the question.

c) On quadrupling the stiffness constant as well as mass:

New stiffness constant, k'=4k

New mas, m'=4m

<u>Then the new time period:</u>

T'=2\pi\sqrt{\frac{m'}{k'} }\\\\T'=2\pi\sqrt{\frac{4m}{4k} }\\\\T'=1 \times  2\pi\sqrt{\frac{m}{k} } }\\\\T'=1 \times T

where factor b=1 as asked in the question.

d) On quadrupling the amplitude there will be no effect on the time period because T is independent of amplitude as we can observe in the equation.

so, factor b=1

7 0
1 year ago
One end of a rope is tied to the handle of a horizontally-oriented and uniform door. a force fis applied to the other end of the
sergeinik [125]
<span>Answer:The weight of the door creates a CCW torque given by Tccw = 145 N*3.13 m / 2 You need a CW torque that's equal to that Tcw = F*2.5 m*sin20</span>
4 0
2 years ago
Read 2 more answers
A uniform piece of wire, 20 cm long, is bent in a right angle in the center to give it an L-shape. How far from the bend is the
zlopas [31]

Answer:

the center of mass is 7.07 cm apart from the bend

Explanation:

the centre of mass of a wire of length L is L/2 ( assuming uniform density). Then initially the x coordinate of the centre of mass is

x₁ = L/2 = 20 cm /2 = 10 cm

when the wire is bent in a right angle the coordinates of the new centre of mass will be

x₂ = L₂/2

y₂=  L₂/2

where L₂ is the length of the horizontal piece and vertical piece . Then L₂=L/2

x₂ = L₂/2 = L/4 = 20 cm/4 = 5 cm

y₂= L₂/2 = L/4 = 20 cm/4 = 5 cm

x₂=y₂=X

locating the bend in the origin (0,0) the distance to the centre of mass is

d = √(x₂²+y₂²) = √(2X²) = √2*X=√2*5cm = 7.07 cm

d = 7.07 cm

5 0
2 years ago
Read 2 more answers
Multiply the number 4.48E-8 by 5.2E-4 using Google. What is the correct answer in scientific notation?
Oksi-84 [34.3K]

Answer:

2.32\times 10^{-11}

Explanation:

First number is 4.48\times 10^{-8}

Second number is 5.2\times 10^{-4}

We need to multiply the two numbers.

4.48\times 10^{-8}\times 5.2\times 10^{-4}=(4.48\times 5.2)\times 10^{(-8-4)}\\\\=23.296\times 10^{-12}

In scientific notation : 2.32\times 10^{-11}

Hence, this is the required solution.

8 0
1 year ago
Other questions:
  • What force must be exerted on the master cylinder of a hydraulic lift to support the weight of a 2000-kg car (a large car) resti
    8·1 answer
  • an 2-kg object is moving horizontally with a speed of 4m/s. how much net force os required to keep the object movong with the sa
    8·1 answer
  • A space probe is built with a mass of 1700 pound-mass [lbm] before launch on Earth. The probe is powered by four ion thrusters,
    8·2 answers
  • A boy is pulling a load of 150N with a string inclined at an angle 30 to the horizontal if the tension of string is 105N the for
    6·1 answer
  • Would an oil ship moving at a speed of 10km/h have more or less momentum than a car moving at a speed of 100km/h? Explain your a
    15·2 answers
  • A simple pendulum of length 2.5 m makes 5.0 complete swings in 16 s. What is the acceleration of gravity at the location?
    12·1 answer
  • A ladybug sits at the outer edge of a turntable, and a gentleman bug sits halfway between her and the axis of rotation. The turn
    7·2 answers
  • A series circuit contains an 80-μF capacitor, a 0.020-H inductor, and a switch. The resistance of the circuit is negligible. Ini
    14·1 answer
  • You have a resistor and a capacitor of unknown values. First, you charge the capacitor and discharge it through the resistor. By
    14·1 answer
  • (b) The density of aluminum is 2.70 g/cm3. The thickness of a rectangular sheet of aluminum foil varies
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!