A complex entity involving the Earth's biosphere, atmosphere, oceans, and soil; the totality constituting a feedback or cybernetic system which seeks an optimal physical and chemical environment for life on this planet
Answer:
option (b)
Explanation:
According to the Pascal's law
F / A = f / a
Where, F is the force on ram, A be the area of ram, f be the force on plunger and a be the area of plunger.
Diameter of ram, D = 20 cm, R = 20 / 2 = 10 cm
A = π R^2 = π x 100 cm^2
F = 3 tons = 3000 kgf
diameter of plunger, d = 3 cm, r = 1.5 cm
a = π x 2.25 cm^2
Use Pascal's law
3000 / π x 100 = f / π x 2.25
f = 67.5 Kgf
Answer:
Final speed of the crate is 15 m/s
Explanation:
As we know that constant force F = 80 N is applied on the object for t = 12 s
Now we can use definition of force to find the speed after t = 12 s

so here we know that object is at rest initially so we have


Now for next 6 s the force decreases to ZERO linearly
so we can write the force equation as

now again by same equation we have



put t = 6 s



Answer:
(D) The weight of the space station and the gravitational force of the space station on the earth.
Explanation:
In both A and B , both the forces act in the same direction ( downwards ) , so they can not be action- reaction force .
In the option C , weight of a astronaut can only be reaction force of gravitational force exerted on the earth by astronaut. Both astronaut and the earth pull each other with equal and opposite force. So option D is correct.
The first problem cannot be solve because you did give the distance or length of the rope, because work = distance x force. i can only solve the the second problem. since the bucket is moving up then force due to gravity is going down, then the net force is:
Fnet = F1 - Fg
where Fg = mg
g is the accelaration due to gravity ( 9.81 m/s^2)
Fnet = 57.5 N - (3.9 kg)(9.81) N
Fnet = 19.24 N