Summary:
a= 12.0 m/(s^2)
v= 100m/s
t1= 2.0s => s1=?
t2=5.0s => s2=?
t3=10.0s => s3=?
——————
Solution:
• when t1=2.0 s, I have gone:
S1= v*t1 + 1/2*a*(t1^2)
=100.0 *2 + 1/2*12.0*(2.0^2)
=224 (m)
• when t2=5.0s, I have gone
S2=v*t2+ 1/2*a*(t2^2)
= 100*5.0+ 1/2*12.0*(5.0^2)
=650 (m)
•when t3= 10.0s, I have gone:
S3=v*t3+ 1/2*a*(t3^2)
=100*10.0+ 1/2*12*(10.0^2)
=1600 (m)
Answer:
Pound is the product of slug and foot/square second.
Explanation:
We are given that
Force=1 N
1N=
We have to find the units comprise the pound.
Force=1 Pound
Mass=Slug
Acceleration=
Therefore,
1 pound=
Therefore, we can write as 1 pound is equal to the product of slug and ft/square second.
Hence, pound is the product of slug and foot/square second.
Answer:
The amount of gas that is to be released in the first second in other to attain an acceleration of 27.0 m/s2 is

Explanation:
From the question we are told that
The mass of the rocket is m = 6300 kg
The velocity at gas is being ejected is u = 2000 m/s
The initial acceleration desired is 
The time taken for the gas to be ejected is t = 1 s
Generally this desired acceleration is mathematically represented as

Here
is the rate at which gas is being ejected with respect to time
Substituting values

=> 
=> 
=> 
=> 