I’m not completely sure but most likely is is the 10 mile bike ride, I hope I can help! (:
Answer: 80m
Explanation:
Distance of balloon to the ground is 3150m
Let the distance of Menin's pocket to the ground be x
Let the distance between Menin's pocket to the balloon be y
Hence, x=3150-y------1
Using the equation of motion,
V^2= U^s + 2gs--------2
U= initial speed is 0m/s
g is replaced with a since the acceleration is under gravity (g) and not straight line (a), hence g is taken as 10m/s
40m/s is contant since U (the coin is at rest is 0) hence V =40m/s
Slotting our values into equation 2
40^2= 0^2 + 2 * 10* (3150-y)
1600 = 0 + 63000 - 20y
1600 - 63000 = - 20y
-61400 = - 20y minus cancel out minus on both sides of the equation
61400 = 20y
Hence y = 61400/20
3070m
Hence, recall equation 1
x = 3150 - 3070
80m
I hope this solve the problem.
Answer:
0.2cm towards the retina.
Explanation:
the focal length of the frog eye is
(1/f) = (1/10) + (1/0.8)
f = 0.74cm
Since the distance of the object is 15cm Hence
(1/0.74) = (1/15) + (1/V)
V = 0.78cm
Therefore the distance the retina is to move is
0.78cm - 0.8cm = 0.02cm towards the retina.
Answer:
(a) 29 cm
(b) 43.5 cm
Explanation:
(a) when loop A is slack, there are three forces acting on the metre rule.
-0.9 N at 50 cm mark
T at 70 cm mark
-2 N at x
Taking the sum of the torques about B:
∑τ = Iα
(-0.9 N) (50 cm − 70 cm) + (-2 N) (x − 70 cm) = 0
18 Ncm − 2 N (x − 70 cm) = 0
2 N (x − 70 cm) = 18 Ncm
x − 70 cm = 9 cm
x = 79 cm
The distance from the center is |50 cm − 79 cm| = 29 cm.
(b) when loop B is slack, there are three forces acting on the metre rule.
-0.9 N at 50 cm mark
T at 20 cm mark
-2 N at x
Taking the sum of the torques about A:
∑τ = Iα
(-0.9 N) (50 cm − 20 cm) + (-2 N) (x − 20 cm) = 0
-27 Ncm − 2 N (x − 20 cm) = 0
2 N (x − 20 cm) = -27 Ncm
x − 20 cm = -13.5 cm
x = 6.5 cm
The distance from the center is |50 cm − 6.5 cm| = 43.5 cm