answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bingel [31]
1 year ago
15

To measure the coefficient of kinetic friction by sliding a block down an inclined plane the block must be in equilibrium.

Physics
1 answer:
lozanna [386]1 year ago
8 0

Answer:

a)

Explanation:

  • A block sliding down an inclined plane, is subject to two external forces along the slide.
  • One is the component of gravity (the weight) parallel to the incline.
  • If the inclined plane makes an angle θ with the horizontal, this component (projection of the downward gravity along the incline, can be written as follows:

        F_{gp} = m*g* sin \theta (1)

       (taking as positive the direction of the movement of the block)

  • The other force, is the friction force, that adopts any value needed to meet the Newton's 2nd Law.
  • When θ is so large, than the block moves downward along the incline, the friction force can be expressed as follows:

       F_{f} = \mu_{k} * N  (2)

  • The normal force, adopts the value needed to prevent any vertical movement through the surface of the incline:

       N = m*g* cos \theta (3)

  • In equilibrium, both forces, as defined in (1), (2) and (3) must be equal in magnitude, as follows:

        m*g* sin \theta =  \mu_{k} * m*g* cos \theta

  • As the block is moving, if the net force is 0, according to Newton's 2nd Law, the block must be moving at constant speed.
  • In this condition, the friction coefficient is the kinetic one (μk), which can be calculated as follows:

        \mu_{k}  = tg \theta

You might be interested in
10. A girl pulls a wagon along a level path for a distance of 44 m. The handle of
Rina8888 [55]

The work done on the wagon is 3549 J

Explanation:

The work done by a force when moving an object is given by

W=Fd cos \theta

where :

F is the magnitude of the force

d is the displacement

\theta is the angle between the direction of the force and of the displacement

In this problem we have the following data:

F = 87 N is the magnitude of the force

d = 44 m is the displacement of the wagon

\theta=22^{\circ} is the angle between the direction of the force and the displacement

Substituting, we find the work done

W=(87)(44)(cos 22^{\circ})=3549 J

Learn more about work:

brainly.com/question/6763771

brainly.com/question/6443626

#LearnwithBrainly

4 0
2 years ago
A thin, horizontal, 18-cm-diameter copper plate is charged to -3.8 nC. Assume that the electrons are uniformly distributed on th
son4ous [18]

Answer:

Part a)

E = 8436.7 N/C

Part b)

E = 8436.7 N/C

Explanation:

Part a)

Electric field due to large sheet is given as

E = \frac{\sigma}{2\epsilon_0}

\sigma = \frac{Q}{A}

Q = -3.8 nC

A = \pi(0.09)^2

A = 0.025 m^2

\sigma = \frac{-3.8\times 10^{-9}}{0.025}

\sigma = -1.5 \times 10^{-7} C/m^2

now the electric field is given as

E = \frac{-1.5 \times 10^{-7}}{2(8.85 \times 10^{-12})}

E = 8436.7 N/C

Part b)

Now since the electric field is required at same distance on other side

so the field will remain same on other side of the plate

E = 8436.7 N/C

5 0
2 years ago
If a 10 meter ramp helps you move a 500 kg object up 1 meter. What was the mechanical advantage of the ramp?
sattari [20]
The mechanical advantage of an inclined plane is

(Length of the incline) / (its height)

= (10m) / (1m)

= 10 .

It's the same for any load, and doesn't depend on the mass that you're trying to move up or down the ramp.
6 0
2 years ago
Lasers are classified according to the eye-damage danger they pose. Class 2 lasers, including many laser pointers, produce visib
Alexus [3.1K]

Answer:

<em>a) 318.2 W/m^2</em>

<em>b) 2.5 x 10^-4 J</em>

<em>c) 1.55 x 10^-8 v/m</em>

<em></em>

Explanation:

Power of laser P = 1 mW = 1 x 10^-3 W

exposure time t = 250 ms = 250 x 10^-3 s

If beam diameter = 2 mm = 2 x 10^-3 m

then

cross-sectional area of beam A = \pi d^{2} /4 = (3.142 x (2*10^{-3} )^{2})/4

A = 3.142 x 10^-6 m^2

a) Intensity I = P/A

where P is the power of the laser

A is the cros-sectional area of the beam

I = ( 1 x 10^-3)/(3.142 x 10^-6) = <em>318.2 W/m^2</em>

<em></em>

b) Total energy delivered E = Pt

where P is the power of the beam

t is the exposure time

E = 1 x 10^-3 x 250 x 10^-3 = <em>2.5 x 10^-4 J</em>

<em></em>

c) The peak electric field is given as

E = \sqrt{2I/ce_{0} }

where I is the intensity of the beam

E is the electric field

c is the speed of light = 3 x 10^8 m/s

e_{0} = 8.85 x 10^9 m kg s^-2 A^-2

E = \sqrt{2*318.2/3*10^8*8.85*10^9}  = <em>1.55 x 10^-8 v/m</em>

6 0
2 years ago
A pickup truck starts from rest and maintains a constant acceleration a0. After a time t0, the truck is moving with speed 25 m/s
Anastaziya [24]

Answer:

the correct answer is c     v₁> 12.5 m / s

Explanation:

This is a one-dimensional kinematics exercise, let's start by finding the link to get up to speed.

            v² = v₀² + 2 a₁ x

as part of rest v₀ = 0

           a₁ = v² / 2x

           a₁ = 25² / (2 120)

           a₁ = 2.6 m / s²

now we can find the velocity for the distance x₂ = 60 m

           v₁² = 0 + 2 a1 x₂

           v₁ = Ra (2 2,6 60)

           v₁ = 17.7 m / s

these the speed at 60 m

we see that the correct answer is c     v₁> 12.5 m / s

5 0
2 years ago
Other questions:
  • Suppose we replace both hover pucks with pucks that are the same size as the originals but twice as massive. otherwise, we keep
    11·2 answers
  • Ryan and Becca are moving a folding table out of the sunlight. A cup of lemonade, with the message 0.44 kg is on the table. Becc
    6·1 answer
  • Identical cannon balls are fired with the same force, one each from four cannons having respective bore lengths of 1.0 meter, 2.
    10·1 answer
  • While Bob is demonstrating the gravitational force on falling objects to his class, he drops an 1.0 lb bag of feathers from the
    6·2 answers
  • A bird flying at a height of 12 m doubles its speed as it descends to a height of 6.0 m. The kinetic energy has changed by a fac
    15·1 answer
  • A densly wound cylindrical coil has 210 turns per meter, a 5 cm radius, and carries 38 mA. What is the magnitude of the uniform
    11·1 answer
  • Which number can each term of the equation be multiplied by to eliminate the fractions before solving? 6 – x + = 6 minus StartFr
    13·2 answers
  • In a simple circuit a 6-volt dry cell pushes charge through a single lamp which has a resistance of 3 Ω. According to Ohms law t
    14·1 answer
  • A child is playing with a spring toy, first stretching and then compressing it.
    10·1 answer
  • A single-turn current loop carrying a 4.00 A current, is in the shape of a right-angle triangle with sides of 50.0 cm, 120 cm, a
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!