Answer:
The distance is 11 m.
Explanation:
Given that,
Friction coefficient = 0.24
Time = 3.0 s
Initial velocity = 0
We need to calculate the acceleration
Using newton's second law
...(I)
Using formula of friction force
....(II)
Put the value of F in the equation (II) from equation (I)
....(III)

Put the value in the equation (III)


We need to calculate the distance,
Using equation of motion



Hence, The distance is 11 m.
Hope this is helpful <span>Weightlessness
</span>
Let there be N number of wires.
Maximum tension a wire can withstand = 100 lb
so, Total tension N wires can withstand = 100 N
now, total tension in N wires = Maximum weight of bucket
100 N = W
so, W = 100N
W is the weight of bucket and 100N is its maximum value.
The question is incomplete. Here is the entire question.
A jetboat is drifting with a speed of 5.0m/s when the driver turns on the motor. The motor runs for 6.0s causing a constant leftward acceleration of magnitude 4.0m/s². What is the displacement of the boat over the 6.0 seconds time interval?
Answer: Δx = - 42m
Explanation: The jetboat is moving with an acceleration during the time interval, so it is a <u>linear</u> <u>motion</u> <u>with</u> <u>constant</u> <u>acceleration</u>.
For this "type" of motion, displacement (Δx) can be determined by:

is the initial velocity
a is acceleration and can be positive or negative, according to the referential.
For Referential, let's assume rightward is positive.
Calculating displacement:


= - 42
Displacement of the boat for t=6.0s interval is
= - 42m, i.e., 42 m to the left.
Explanation:
the question is unanswerable