answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zlopas [31]
2 years ago
12

If F1 is the force on q due to Q1 and F2 is the force on q due to Q2, how do F1 and F2 compare? Assume that n=2.

Physics
1 answer:
Anna35 [415]2 years ago
6 0

This question is incomplete

Complete Question

Three equal point charges are held in place as shown in the figure below

If F1 is the force on q due to Q1 and F2 is the force on q due to Q2, how do F1 and F2 compare? Assume that n=2.

A) F1=2F2

B) F1=3F2

C) F1=4F2

D) F1=9F2

Answer:

D) F1=9F2

Explanation:

We are told in the question that there are three equal point charges.

q, Q1, Q2 ,

q = Q1 = Q2

From the diagram we see the distance between the points d

q to Q1 = d

Q1 to Q2 = nd

Assuming n = 2

= 2 × d = 2d

Sum of the two distances = d + 2d = 3d

F1 is the force on q due to Q1 and

F2 is the force on q due to Q2,

Since we have 3 equal point charges and a total sum of distance which is 3d

Hence,

F1 = 9F2

You might be interested in
A 0.110 kg cube of ice (frozen water) is floating in glycerine. The glycerine is in a tall cylinder that has inside radius 3.70
Sonbull [250]

Answer:

the distance by which the height of the  liquid in the cylinder change after the ice gets melted = 0.528 cm

Explanation:

The change in volume of glycerin when the ice cube is placed on the surface of the glycerin can be represented as:

V = \frac{m}{ \rho}

Given that ;

the mass of the ice cube (m) = 0.11 kg = 0.110 × 10³ g

density of the glycerine (\rho) = 1.260 kg/L = 1.260 g/cm³

Then:

V = \frac{0.110*10^3 \ g}{1.260 \ g/cm^3}

V = 0.0873*10^3 \ cm^3 (\frac{1L}{10^3 cm^3})

V = 0.0873 L

Now;Initially the volume of the glycerin before the ice cube starts to melt is:

V_1 = V_i + V\\\\V_1 = V_i+ 0.0873 \ L

However; the volume of the water produced by the 0.11 kg ice cube = 0.11*10^3 \ cm^3

The expression for change in the volume of glycerin after the ice cube starts to melt is as follows:

V_2 = V_i + V"

replacing V" with 0.11*10^3 \ cm^3 ; we have:

V_2 = V_i (0.11*10^3 \ cm^3 )(\frac{1 \ L }{10^3 \ cm^3})

V_2 = V_i + 0.11 \ L

The overall total change in the volume of the glycerin is illustrated as:

V_f = V_2 - V_1

Now; from the foregoing ; lets replace the respective value of V_2 and V_1 in the above equation ; we have;

V_f = (V_i + 0.11 \ L) - (V_i + \ 00873 \ L)\\ \\V_f = 0.11 L - 0.0873 \ L\\\\V_f = 0.0227 \ L

The formula usually known to be the volume of a cylinder is :

V = \pi r ^2 h

For the question ; we will have:

V_f = \pi r ^2 h

making h the subject of the  formula ; we have:

h = \frac{V_f}{\pi r^2}

replacing 0.0227 L for V_fand the given value of radius which is = 3.70 cm; we have:

h = \frac{0.0227 \ L ( \frac{10^3 \ cm^3}{1\ L})}{\pi * (3.70 cm)^2}

h = \frac{22.7 \ cm^3}{\pi * (3.70 cm)^2}\\\\h = 0.528 \ \ cm

Thus ; the distance by which the height of the  liquid in the cylinder change after the ice gets melted = 0.528 cm

8 0
2 years ago
A displacement vector points in a direction of θ = 23° left of the positive y-axis. The magnitude of this vector is D = 155 m. R
Lady bird [3.3K]

Answer:

Dₓ = -155 sin 23° i + 0 j

Explanation:

The diagram showing the vector has been attached to this response.

As shown in the diagram,

The vector D has an x-component (also called horizontal component) of -D sinθ i. i.e

Dₓ = -D sin θ i   [The negative sign shows that D lies in the negative x direction]

Where;

D = magnitude of D = 155m

θ = direction of D = 23°

Therefore;

Dₓ = -155 sin 23° i

Since Dₓ represents the x component, its unit vector, j component has a value of 0.

Therefore, Dₓ can be written in terms of D, θ and the unit vectors i and j as follows;

Dₓ = -155 sin 23° i + 0 j

3 0
2 years ago
Karen is running forward at a speed of 9 m/s. She tosses her sweaty headband backward at a speed of 20 m/s. The speed of the hea
Komok [63]
Let Karen's forward speed be considered as positive.
Therefore, before the headband is tossed backward, the speed of the headband is
V = 9 m/s

The headband is tossed backward relative to Karen at a speed of 20 m/s. Therefore the speed of the headband relative to Karen is
U = -20 m/s

The absolute speed of the headband, relative to a stationary observer is
V - U
= 9 + (-20)
= - 11 m/s

Answer:
The stationary observes the headband traveling (in the opposite direction to Karen) at a speed of 11 m/s backward.

8 0
2 years ago
Read 2 more answers
A baseball pitcher throws a ball at 90.0 mi/h in the horizontal direction. How far does the ball fall vertically by the time it
Lisa [10]

Answer:

Vertical distance=  3.3803ft

Explanation:

First with the speed of the ball and the distance traveled horizontally we can determine the flight time to reach the plate:

Velocity= (90 mi/h) × (1 mile/5280ft) = 475200ft/h

Distance= Velocity × time⇒ time= 60.5ft / (475200ft/h) = 0.00012731h

time=  0.00012731h × (3600s/h)= 0.458316s

With this time we can determine the distance traveled vertically taking into account that its initial vertical velocity is zero and its acceleration is that of gravity, 9.81m/s²:

Vertical distance= (1/2) × 9.81 (m/s²) × (0.458316s)²=1.0303m

Vertical distance= 1.0303m × (1ft/0.3048m) = 3.3803ft

This is the vertical distance traveled by the ball from the time it is thrown by the pitcher until it reaches the plate, regardless of air resistance.

3 0
2 years ago
A 5.0-n projectile leaves the ground with a kinetic energy of 220 j. at the highest point in its trajectory, its kinetic energy
NikAS [45]
First, we get the difference between the kinetic energies such that,
             difference = (220J - 120J)
             difference = 100 J
The difference in kinetic energy is the equivalent of the potential energy which is calculated through the equation,
              PE = mgh
To calculate for the height, we derive the equation in a form,
           h = PE/mg
The product of the mass and acceleration due to gravity is the weight. 
                   h = (100 J) / (5 N)
                   h = 20 m

<em>Hence, the answer is 20 m. </em>
3 0
2 years ago
Other questions:
  • A passenger jet flies from one airport to another 1,273 miles away in 2.2 h. find its average speed.
    14·2 answers
  • Find the centripetal force needed by a 1275 kg car to make a turn of radius 40.0 m at a speed of 25.0 km/h
    12·2 answers
  • Which field in an 802.11a plcp frame are used to initialize part of the transmitter and receiver circuits?
    8·1 answer
  • Two identical metal spheres A and B are in contact. Both are initially neutral. 1.0× 10 12 electrons are added to sphere A, then
    15·1 answer
  • How much heat Q1 is transferred by 25.0 g of water onto the skin? To compare this to the result in the previous part, continue t
    13·1 answer
  • The wheel having a mass of 100 kg and a radius of gyration about the z axis of kz=300mm, rests on the smooth horizontal plane.a.
    11·1 answer
  • The flight of a kicked football follows the quadratic function f(x)=−0.02x2+2.2x+2, where f(x) is the vertical distance in feet
    14·1 answer
  • Guadalupe has a motorized globe on her desk that has a 0.16 m radius. She turns on the 4.25-watt motor and the globe begins to s
    12·1 answer
  • A one-dimensional particle-in-a-box may be used to illustrate the import kinetic energy quantization in covalent bond formation.
    6·1 answer
  • A 2-kg toy car accelerates from 0 to 5 m/s2. It
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!