answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elza [17]
2 years ago
10

Which of the following expressions will have units of kg⋅m/s2? Select all that apply, where x is position, v is velocity, m is m

ass, and a is acceleration.

Physics
1 answer:
netineya [11]2 years ago
6 0

Answer: m \frac{d}{dt}v_{(t)}

Explanation:

In the image  attached with this answer are shown the given options from which only one is correct.

The correct expression is:

m \frac{d}{dt}v_{(t)}

Because, if we derive velocity v_{t} with respect to time t we will have acceleration a, hence:

m \frac{d}{dt}v_{(t)}=m.a

Where m is the mass with units of kilograms (kg) and a with units of meter per square seconds \frac{m}{s}^{2}, having as a result kg\frac{m}{s}^{2}

The other expressions are incorrect, let’s prove it:

\frac{m}{2} \frac{d}{dx}{(v_{(x)})}^{2}=\frac{m}{2} 2v_{(x)}^{2-1}=mv_{(x)} This result has units of kg\frac{m}{s}

m\frac{d}{dt}a_{(t)}=ma_{(t)}^{1-1}=m This result has units of kg

m\int x_{(t)} dt= m \frac{{(x_{(t)})}^{1+1}}{1+1}+C=m\frac{{(x_{(t)})}^{2}}{2}+C This result has units of kgm^{2} and C is a constant

m\frac{d}{dt}x_{(t)}=mx_{(t)}^{1-1}=m This result has units of kg

m\frac{d}{dt}v_{(t)}=mv_{(t)}^{1-1}=m This result has units of kg

\frac{m}{2}\int {(v_{(t)})}^{2} dt= \frac{m}{2} \frac{{(v_{(t)})}^{2+1}}{2+1}+C=\frac{m}{6} {(v_{(t)})}^{3}+C This result has units of kg \frac{m^{3}}{s^{3}} and C is a constant

m\int a_{(t)} dt= \frac{m {a_{(t)}}^{2}}{2}+C This result has units of kg \frac{m^{2}}{s^{4}} and C is a constant

\frac{m}{2} \frac{d}{dt}{(v_{(x)})}^{2}=0 because v_{(x)} is a constant in this derivation respect to t

m\int v_{(t)} dt= \frac{m {v_{(t)}}^{2}}{2}+C This result has units of kg \frac{m^{2}}{s^{2}} and C is a constant

You might be interested in
The human ear canal is, on average, 2.5cm long and aids in hearing by acting like a resonant cavity that is closed on one end an
Troyanec [42]

Answer:

3400 Hz

Explanation:

We know that

1 cm = 0.01 m

L = Length of the human ear canal = 2.5 cm = 0.025 m

V = Speed of sound = 340 ms⁻¹

f = First resonant frequency

The human ear canal behaves as a closed pipe and for a closed pipe, nth resonant frequency is given as

f = \frac{(2n - 1)V}{4L}

for first resonant frequency, we have n = 1

Inserting the values

f = \frac{(2(1) - 1) 340}{4(0.025)}

f = \frac{340}{4(0.025)}

f = 3400 Hz

4 0
2 years ago
If two waves with identical crests and troughs meet, what is happening?
Nastasia [14]
<span>If two waves with identical crests and troughs meet, what is happening?
</span>C. Constructive interference is occurring. 
3 0
2 years ago
Read 2 more answers
Based on the time measurements in the table, what can be said about the speed of the car on the lower track as compared to the h
raketka [301]

Answer:

1.a

2.longer

Explanation:

7 0
2 years ago
Read 2 more answers
Wrapping paper is being unwrapped from a 5.0-cm radius tube, free to rotate on its axis. if it is pulled at the constant rate of
lisov135 [29]
So the equation for angular velocity is

Omega = 2(3.14)/T

Where T is the total period in which the cylinder completes one revolution.

In order to find T, the tangential velocity is

V = 2(3.14)r/T

When calculated, I got V = 3.14

When you enter that into the angular velocity equation, you should get 2m/s
5 0
2 years ago
A windowpane is half a centimeter thick and has an area of 1.0 m2. The temperature difference between the inside and outside sur
polet [3.4K]

To solve this problem it is necessary to apply the concepts related to the heat flux rate expressed in energetic terms. The rate of heat flow is the amount of heat that is transferred per unit of time in some material. Mathematically it can be expressed as:

\frac{Q}{t} = \frac{kA}{L} (T_H - T_C)

Where

k = 0.84 J/s⋅m⋅°C (The thermal conductivity of the material)

A = 1m^2 Area

L = 5*10^{-3}m Length

T_H= Temperature of the "hot"reservoir

T_C= Temperature of the "cold"reservoir

Replacing with our values we have that,

\frac{Q}{t} = \frac{kA}{L} (T_H - T_C)

\frac{Q}{t} = \frac{(0.84)(1)}{0.005} (15)

\frac{Q}{t} = 2520J/s

Therefore the correct answer is B.

3 0
2 years ago
Other questions:
  • A cheetah can run at 30 m/s, but only for about 12s. How far will it run in that time
    12·1 answer
  • According to Newton’s law of universal gravitation, which statements are true?
    10·2 answers
  • A transverse wave is traveling from north to south. Which statement could be true for the motion of the wave particles in the me
    14·2 answers
  • A parent pushes a stroller with a 11.2 N force for 15.9 m. How much work did the parent do?
    13·1 answer
  • Which are methods of reducing exposure to ionizing radiation? Check all that apply.
    5·2 answers
  • Two oppositely charged but otherwise identical conducting plates of area 2.50 square centimeters are separated by a dielectric 1
    14·1 answer
  • A rectangular coil of dimensions 5.40cm x 8.50cm consists of25 turns of wire. The coil carries a current of 15.0 mA.
    5·1 answer
  • Technician A says that the use of some RTV sealants to seal components on an engine can damage the oxygen sensor. Technician B s
    6·1 answer
  • 5. A nail contains trillions of electrons. Given that electrons repel from each other, why do they not then fly out of the nail?
    14·1 answer
  • The wheels of the locomotive push back on the tracks with a constant net force of 7.50 × 105 N, so the tracks push forward on th
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!