answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elza [17]
2 years ago
10

Which of the following expressions will have units of kg⋅m/s2? Select all that apply, where x is position, v is velocity, m is m

ass, and a is acceleration.

Physics
1 answer:
netineya [11]2 years ago
6 0

Answer: m \frac{d}{dt}v_{(t)}

Explanation:

In the image  attached with this answer are shown the given options from which only one is correct.

The correct expression is:

m \frac{d}{dt}v_{(t)}

Because, if we derive velocity v_{t} with respect to time t we will have acceleration a, hence:

m \frac{d}{dt}v_{(t)}=m.a

Where m is the mass with units of kilograms (kg) and a with units of meter per square seconds \frac{m}{s}^{2}, having as a result kg\frac{m}{s}^{2}

The other expressions are incorrect, let’s prove it:

\frac{m}{2} \frac{d}{dx}{(v_{(x)})}^{2}=\frac{m}{2} 2v_{(x)}^{2-1}=mv_{(x)} This result has units of kg\frac{m}{s}

m\frac{d}{dt}a_{(t)}=ma_{(t)}^{1-1}=m This result has units of kg

m\int x_{(t)} dt= m \frac{{(x_{(t)})}^{1+1}}{1+1}+C=m\frac{{(x_{(t)})}^{2}}{2}+C This result has units of kgm^{2} and C is a constant

m\frac{d}{dt}x_{(t)}=mx_{(t)}^{1-1}=m This result has units of kg

m\frac{d}{dt}v_{(t)}=mv_{(t)}^{1-1}=m This result has units of kg

\frac{m}{2}\int {(v_{(t)})}^{2} dt= \frac{m}{2} \frac{{(v_{(t)})}^{2+1}}{2+1}+C=\frac{m}{6} {(v_{(t)})}^{3}+C This result has units of kg \frac{m^{3}}{s^{3}} and C is a constant

m\int a_{(t)} dt= \frac{m {a_{(t)}}^{2}}{2}+C This result has units of kg \frac{m^{2}}{s^{4}} and C is a constant

\frac{m}{2} \frac{d}{dt}{(v_{(x)})}^{2}=0 because v_{(x)} is a constant in this derivation respect to t

m\int v_{(t)} dt= \frac{m {v_{(t)}}^{2}}{2}+C This result has units of kg \frac{m^{2}}{s^{2}} and C is a constant

You might be interested in
A) The current theory of the structure of the Earth, called plate tectonics, tells us that the continents are in constant motion
suter [353]

A) The mass of the continent is 2.5\cdot 10^{21} kg

B) The kinetic energy is 2016 J

C) The speed of the jogger should be 7.1 m/s

Explanation:

A)

The mass of the continent can be calculated as

m = \rho V

where

\rho = 2800 kg/m^3 is its density

V is its volume

We have to calculate its volume. We know that the continent is represented as a slab of side 5900 km (so its surface is 5900 x 5900, assuming it is a square) and depth of 26 km, so its volume is:

V=(5900 km)^2 (26 km)=9.05\cdot 10^8 km^3 =9.05 \cdot 10^8 \cdot (10^9 m^3/k^3)=9.05\cdot 10^7 m^3

So, the mass of the continent is

m=\rho V = (2800)(9.05\cdot 10^{17})=2.5\cdot 10^{21} kg

B)

The kinetic energy of a body is given by

K=\frac{1}{2}mv^2

where

m is the mass of the body

v is its speed

For the continent, we have:

m=2.5\cdot 10^{21} kg is the mass

v=4 cm/year is the speed

We have to convert the speed into SI units. we have:

1 cm = 0.01 m

1 year = (365)(24)(60)(60) s = 3.15\cdot 10^7 s

So, the speed is

v=4 cm/year = 0.04 m/year \cdot \frac{1}{3.15\cdot 10^7}=1.27\cdot 10^{-9} m/s

Therefore, the kinetic energy is

K=\frac{1}{2}(2.5\cdot 10^{21} kg)(1.27\cdot 10^{-9} m/s)^2=2016 J

C)

Again, the kinetic energy of an object is

K=\frac{1}{2}mv^2

For the jogger in this problem, his mass is

m = 80 kg

And we want its kinetic energy to be equal to that of the continent, so

K = 2016 J

Re-arranging the equation for v, we find what speed the jogger needs to have this kinetic energy:

v=\sqrt{\frac{2K}{m}}=\sqrt{\frac{2(2016)}{80}}=7.1 m/s

Learn more about kinetic energy here:

brainly.com/question/6536722

#LearnwithBrainly

8 0
2 years ago
A ball is dropped from the top of a cliff. By the time it reaches the ground, all the energy in its gravitational potential ener
Bingel [31]

The ball was dropped from a height 20 meters

Explanation:

The given is

1. A ball is dropped from the top of a cliff

2. By the time it reaches the ground, all the energy in its gravitational

   potential energy store has been transferred into its kinetic energy

   store, that mean K.E = P.E

3. The ball is travelling at 20 m/s when it hits the ground

4. The gravitational field strength is 10 N/kg

We need to find the height that the ball dropped from it

The ball dropped from the top of a cliff means the initial speed is 0

→ K.E = \frac{1}{2}m(v^{2}-v_{0}^{2})

where v is the final speed, v_{0} in the initial speed and m

is the mass

→ v = 20 m/s and v_{0} = 0 m/s

→ K.E = \frac{1}{2}m(20^{2}-0^{2})

→ K.E = \frac{1}{2}m(400)

→ K.E = 200 m joules ⇒ when the ball hits the ground

→ P.E = m g h

where g is the gravitational field strength, m is the mass and h is

the height

→ g = 10 N/kg

→ P.E = m(10)(h)

→ P.E = 10 m h joules

→ P.E = K.E

→ 10 m h = 200 m

Divide both sides by 10 m

→ h = 20 meters

The ball was dropped from a height 20 meters

Learn more

You can learn more about gravitational potential energy in brainly.com/question/1198647

#LearnwithBrainly

8 0
2 years ago
By standard convention, both the electric potential and the the electric potential energy between two charges is taken to be zer
shusha [124]

Answer: at when distance r = infinity.

Explanation: The formulae for the electric potential of an electric charge to an arbitrary point is given by the formulae below

V = q/4πεr

V = electric potential (volts)

q = magnitude of electric charge

ε = permittivity of free space

r = distance between arbitrary point and charge.

In the equation above, it can be seen that only electric potential (v) and distance (r) is a variable, and there is an inverse relationship between them (an increase in one leads to a decrease in the other)

Thus to have zero value of electric potential (v= 0) we have to have the largest value of r ( r = infinity).

Same goes for electric potential energy between two charges, the formulae is given below as

W = q1 *q2/4πεr

W= electric potential energy

q1 = magnitude of first charge.

q2 = magnitude of second charge

ε = permittivity of free space

r = distance between arbitrary point and charge.

Also, all values are constant aside from electric potential energy (w) and distance (r) which have an inverse relationship.

Thus to have zero value of electric potential energy (w =0), we have to get an infinite value of distance ( r =infinity)

6 0
2 years ago
Consider three drinking glasses. All three have the same area base, and all three are filled to the same depth with water. Glass
Kay [80]

The glass which has the greatest liquid pressure at the bottom is all 3 have equal non-zero pressure at the bottom. The correct answer between all the choices given is the first choice or letter A. I am hoping that this answer has satisfied your query about and it will be able to help you.

4 0
1 year ago
Read 2 more answers
A lump of steel of mass 10kg at 627 degree Celsius is dropped in 100kg oil at 30 degree Celsius . the specific heat of steel And
Naily [24]

Answer:

700J

Explanation:

8 0
2 years ago
Other questions:
  • Calculate the distance the marble travels during the first 3.0 seconds. [Show all work, including the equation and substitution
    5·1 answer
  • Two identical ladders are 3.0 m long and weigh 600 N each. They are connected by a hinge at the top and are held together by a h
    6·2 answers
  • A certain alarm clock ticks four times each second, with each tick representing half a period. The balance wheel consists of a t
    15·1 answer
  • A small car meshes with a large truck in a head-on collision. Which of the following statements concerning the magnitude of the
    14·1 answer
  • The drawing shows a person (weight W = 588 N, L1 = 0.838 m, L2 = 0.398 m) doing push-ups. Find the normal force exerted by the f
    9·1 answer
  • You are working as an assistant to an air-traffic controller at the local airport, from which small airplanes take off and land.
    14·1 answer
  • A small box of mass m1 is sitting on a board of mass m2 and length L (Figure 1) . The board rests on a frictionless horizontal s
    13·1 answer
  • The axoplasm of an axon has a resistance Rax. The axon's membrane has both a resistance (Rmem) and a capacitance (Cmem). A singl
    14·1 answer
  • Se deja caer una piedra A en reposo desde un acantilado muy alto. Cuando ha caído 5 m, se deja caer una piedra B. A. Explicar ¿c
    8·1 answer
  • Bill drives and sees a red light. He slows down to a stop. A graph of his velocity over time is shown below.
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!