answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elza [17]
1 year ago
10

Which of the following expressions will have units of kg⋅m/s2? Select all that apply, where x is position, v is velocity, m is m

ass, and a is acceleration.

Physics
1 answer:
netineya [11]1 year ago
6 0

Answer: m \frac{d}{dt}v_{(t)}

Explanation:

In the image  attached with this answer are shown the given options from which only one is correct.

The correct expression is:

m \frac{d}{dt}v_{(t)}

Because, if we derive velocity v_{t} with respect to time t we will have acceleration a, hence:

m \frac{d}{dt}v_{(t)}=m.a

Where m is the mass with units of kilograms (kg) and a with units of meter per square seconds \frac{m}{s}^{2}, having as a result kg\frac{m}{s}^{2}

The other expressions are incorrect, let’s prove it:

\frac{m}{2} \frac{d}{dx}{(v_{(x)})}^{2}=\frac{m}{2} 2v_{(x)}^{2-1}=mv_{(x)} This result has units of kg\frac{m}{s}

m\frac{d}{dt}a_{(t)}=ma_{(t)}^{1-1}=m This result has units of kg

m\int x_{(t)} dt= m \frac{{(x_{(t)})}^{1+1}}{1+1}+C=m\frac{{(x_{(t)})}^{2}}{2}+C This result has units of kgm^{2} and C is a constant

m\frac{d}{dt}x_{(t)}=mx_{(t)}^{1-1}=m This result has units of kg

m\frac{d}{dt}v_{(t)}=mv_{(t)}^{1-1}=m This result has units of kg

\frac{m}{2}\int {(v_{(t)})}^{2} dt= \frac{m}{2} \frac{{(v_{(t)})}^{2+1}}{2+1}+C=\frac{m}{6} {(v_{(t)})}^{3}+C This result has units of kg \frac{m^{3}}{s^{3}} and C is a constant

m\int a_{(t)} dt= \frac{m {a_{(t)}}^{2}}{2}+C This result has units of kg \frac{m^{2}}{s^{4}} and C is a constant

\frac{m}{2} \frac{d}{dt}{(v_{(x)})}^{2}=0 because v_{(x)} is a constant in this derivation respect to t

m\int v_{(t)} dt= \frac{m {v_{(t)}}^{2}}{2}+C This result has units of kg \frac{m^{2}}{s^{2}} and C is a constant

You might be interested in
You are riding on a roller coaster that starts from rest at a height of 25.0 m and moves along a frictionless track. however, af
djyliett [7]
I attached the missing picture.
We can figure this one out using the law of conservation of energy.
At point A the car would have potential energy and kinetic energy.
A: mgh_1+\frac{mv_1^2}{2}
Then, while the car is traveling down the track it loses some of its initial energy due to friction:
W_f=F_f\cdot L
So, we know that the car is approaching the point B with the following amount of energy:
mgh_1+\frac{mv_1^2}{2}- F_fL
The law of conservation of energy tells us that this energy must the same as the energy at point B. 
The energy at point B is the sum of car's kinetic and potential energy:
B: mgh_2+\frac{mv_2}{2}
As said before this energy must be the same as the energy of a car approaching the loop:
mgh_2+\frac{mv_2}{2}=mgh_1+\frac{mv_1^2}{2}- F_fL
Now we solve the equation for v_1:
v_1^2=2g(h_2-h_1)+v_2^2+\frac{2F_fL}{m}\\
v_1^2=39.23\\
v_1=\sqrt{39.23}=6.26\frac{m}{s}

4 0
1 year ago
Read 2 more answers
Is v2 = v1t+a dimensionally correct? Explain please!
Lady bird [3.3K]
You want v2 = v1 + at
v is measured in m/s, a in m/s2, and t in s.
the dimensions multiply like algebraic quantities. 
so because v2 is measured in m/s, then (v1 + at) has to come out in m/s
 the units for (v1 + at) are (m/s) + (m/s2)(s)
time "s" cancels out one acceleration "s", so it comes ut to (m/s) + (m/s), which = (m/s). 
if you had (v1t + a), then you would have (m/s)(s) + (m/s2) which = (m) + (m/s2), which doesn't work.

4 0
2 years ago
Scenario A: 120 J of work is done in 6 s. Scenario B: 160 J of work is done in 8 s. Scenario C: 200 J of work is done in 10 s. W
hodyreva [135]
Using the equation P = W/t to solve your problem . 

Thus the answer is all of them use the same amount of power. 20 J.  
8 0
1 year ago
Read 2 more answers
Write a hypothesis about how the height of the cylinder affects the temperature of the water. Use the "if . . . then . . . becau
IgorLugansk [536]

If the mass of the cylinder increases, the temperature of the water increases, because a greater mass means the cylinder has more potential energy that can be converted to thermal energy, increasing the temperature of the water.


4 0
2 years ago
A cow’s mass is 410 kg and a car’s mass is 565 kg. What is the difference between their weights?
solmaris [256]
B. 1520 is the difference between their weights.
5 0
2 years ago
Other questions:
  • The stimuli for kinesthesis is the __________ energy of joint and muscle movement. A. thermal B. electrical C. mechanical D. che
    13·2 answers
  • The suns energy is classified by the
    15·2 answers
  • To practice Problem-Solving Strategy 23.2 for continuous charge distribution problems. A straight wire of length L has a positiv
    7·1 answer
  • A research group at Dartmouth College has developed a Head Impact Telemetry (HIT) System that can be used to collect data about
    13·1 answer
  • A plastic film moves over two drums. During a 4-s interval the speed of the tape is increased uniformly from v0 = 2ft/s to v1 =
    5·1 answer
  • Snowboarder Jump—Energy and Momentum
    9·1 answer
  • If the lattice constant of silicon is 5.43 Å, calculate?
    7·1 answer
  • Umar has two copper pans, each containing 500cm3 of water. Pan A has a mass of 750g and pan B has a mass of 1.5kg. Which pan wil
    12·1 answer
  • Sasha is ordered Ampicillin 50mg/kg/day x 48 hours, to be given every 6 hours in 100mls of N/S run over 30 minutes. The tubing h
    12·1 answer
  • Assertion(A):The distance moved by an object in unit time is called its speed. Reason (R):Faster vehicles have higher speeds. i)
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!