answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
s344n2d4d5 [400]
2 years ago
14

A lump of steel of mass 10kg at 627 degree Celsius is dropped in 100kg oil at 30 degree Celsius . the specific heat of steel And

oil are 0.5kj/kg.k and 3.5kj/kg.k calculate the entropy change in steel,oil and in the universe.​
Physics
1 answer:
Naily [24]2 years ago
8 0

Answer:

700J

Explanation:

You might be interested in
A girl and boy pull in opposite directions on a stuffed animal. The girl exerts a force of 3.5 N. The mass of the stuffed animal
Dmitry [639]
The resultant force on the animal = Resultant mass * total acceleration 
F = 0.2 * 2.5 to the right
F = 0.5 to the right.

As, girl exerting a force of 3.5 N & it's not mentioned that she is in right or left, so the force exerting by boy would be either:
3.5-0.5 = 3  OR  3.5+0.5 = 4

If boy exerting a greater force then, answer will be 4 N & if girl exerting a greater force the, answer will be 3 N

Hope this helps!
3 0
2 years ago
Read 2 more answers
One component of a metal sculpture consists of a solid cube with an edge of length 38.9 cm. The alloy used to make the cube has
vovangra [49]

Answer:

The mass of the cube is 420.8 kg.

Explanation:

Given that,

Length of edge = 38.9 cm

Density \rho= 7.15 \times10^{3}\ kg/m^3

We need to calculate the volume of cube

Using formula of volume

V = 38.9^3

V=0.058863\ m^3

We need to calculate the mass of the cube

Using formula of density

\rho = \dfrac{m}{V}

m = V\times\rho

m =0.058863\times7.15 \times10^{3}

m=420.8\ kg

Hence, The mass of the cube is 420.8 kg.

7 0
2 years ago
In a jump spike, a volleyball player slams the ball from overhead and toward the opposite floor. controlling the angle of the sp
8090 [49]
V ( initial ) = 20 m/s
h = 2.30 m
h = v y * t + g t ² / 2
d = v x * t
1 ) At α = 18°:
v y = 20 * sin 18° = 6.18 m/s
v x = 20 * cos 18° = 19.02 m/ s
2.30 = 6.18 t + 4.9 t²
4.9 t² + 6.18 t - 2.30 = 0
After solving the quadratic equation ( a = 4.9, b = 6.18, c = - 2.3 ):
t 1/2 = (- 6.18 +/- √( 6.18² - 4 * 4.9 * (-2.3)) ) / ( 2 * 4.9 )  
t = 0.3 s
d 1 = 19.02 m/s * 0.3 s = 5.706 m
2 ) At  α = 8°:
v y = 20* sin 8° = 2.78 m/s
v x = 20* cos 8° = 19.81 m/s
2.3 = 2.78 t + 4.9 t² 
4.9 t² + 2.78 t - 2.3 = 0
t = 0.46 s
d 2 = 19.81 * 0.46 = 9.113 m
The distance is:
d 2 - d 1 = 9.113 m - 5.706 m = 3.407 m

GOOD LUCK AND HOPE IT HELPS U
6 0
2 years ago
Disturbed by speeding cars outside his workplace, Nobel laureate Arthur Holly Compton designed a speed bump (called the "Holly h
Bezzdna [24]
:<span>  </span><span>30.50 km/h = 30.50^3 m / 3600s = 8.47 m/s 

At the top of the circle the centripetal force (mv²/R) comes from the car's weight (mg) 

So, the net downward force from the car (Fn) = (weight - centripetal force) .. and by reaction this is the upward force provided by the road .. 

Fn = mg - mv²/R 
Fn = m(g - v²/R) .. .. 1800kg (9.80 - 8.47²/20.20) .. .. .. ►Fn = 11 247 N (upwards) 
(b) 
When the car's speed is such that all the weight is needed for the centripetal force .. then the net downward force (Fn), and the reaction from the road, becomes zero. 

ie .. mg = mv²/R .. .. v² = Rg .. .. 20.20m x 9.80 = 198.0(m/s)² 

►v = √198 = 14.0 m/s</span>
3 0
2 years ago
the millersburg ferry (m=13000.0 kg loaded) puts its engines in full reverse and stops in 65 seconds. if the speed before brakin
kenny6666 [7]

The braking force is -400 N

Explanation:

We can solve this problem by using the impulse theorem, which states that the impulse applied on the ferry (the product of force and time) is equal to its change in momentum:

F \Delta t = m(v-u)

where in this problem, we have:

F is the force applied by the brakes

\Delta t = 65 s is the time interval

m = 13,000 kg is the mass of the ferry

u = 2.0 m/s is the initial velocity

v = 0 is the final velocity

And solving for F, we find the force applied by the brakes:

F=\frac{m(v-u)}{\Delta t}=\frac{(13000)(0-2.0)}{65}=-400 N

where the negative sign indicates that the direction is backward.

Learn more about impulse:

brainly.com/question/9484203

#LearnwithBrainly

4 0
2 years ago
Other questions:
  • a concrete cube of side 0.50 m and uniform density 2.0 x 103 kg m–3 is lifted 3.0 m vertically by a crane. what is the change in
    13·2 answers
  • A leaky faucet drips 40 times in 30.0 s. what is the frequency of the dripping?
    13·1 answer
  • A baseball weighs 5.19 oz. what is the kinetic energy, in joules, of this baseball when it is thrown by a major-league pitcher a
    8·2 answers
  • For what value of the ratio r/a of plate radius to separation between the plates does the electric field at the point x=a/2 on t
    15·1 answer
  • Which of the following quantities are zero for an object traveling in a circle at a constant speed? There may be more than one c
    8·1 answer
  • Many gates at railway crossings are operated manually. A typical gate consists of a rod usually made of iron, consisting heavy w
    5·1 answer
  • Arrange the movement/act/organization in ascending order of occurrence. Energy Supply and Environmental Coordination Act Nature
    13·1 answer
  • A millionairess was told in 1992 that she had exactly 15 years to live. However, if she immediately takes off, travels away from
    5·1 answer
  • A rod 16.0 cm long is uniformly charged and has a total charge of -25.0 µC. Determine the magnitude and direction of the electri
    9·1 answer
  • A toy doll and a toy robot are standing on a frictionless surface facing each other. The doll has a mass of 0.2 kg, and the robo
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!