Answer:
Check the explanation
Explanation:
A) There are two important angles within the plastic: the angle immediately after the first refraction (the water/plastic interface) and the angle immediately before the second refraction (the plastic/air interface).
To find out how they relate, draw a picture with the path the light follows in the plastic and the normal to both surfaces.
Once you have labeled both angles, keep in mind that the surfaces are parallel, and thus their normal are parallel lines. An important theorem from geometry will give you the relationship between the angles.
Using Snell's Law, θa = asin[(nw/na)*sin(θw)]
B) D = l/tan(θw)
C) D = l/θw
D) d/D = na/nw
Answer: 
Explanation:

Where;
a = acceleration
V2 = final velocity
V1 = initial velocity
t = time
If John runs 1.0 m/s first, we assume this is V1. He accelerates to 1.6 m/s; this is V2.



Hi, thank you for posting your question here at Brainly.
To compute for the change in potential energy, the equation would be:
delta PE = mg*delta h
delta PE = 0.5*9.81*(2-1.8)
delta Pe = 0.98 J
The potential energy is converted to kinetic energy.
Answer:
The time to boil the water is 877 s
Explanation:
The first thing we must do is calculate the external resistance (R) of the circuit, from the description we notice that it is a series circuit, by which the resistors are added
V = i (r + R)
We replace we calculate
r + R = V / i
R = v / i - r
R = 10/12 -0.04
R = 0.793 Ω
We calculate the power supplied
P = V i = I² R
P = 12² 0.793
P = 114 W
This is the power dissipated in the external resistance
We use the relationship, that power is work per unit of time and that work is the variation of energy
P = E / t
t = E / P
t = 100 10³/114
t = 877 s
The time to boil the water is 877 s