Answer:
Explanation:
a ) At constant pressure , work done = P x Δ V
= 200 x 10³ x ( .1 - .04 )
= 12 x 10³ J .
b )
At constant temperature work done
= n RT ln v₂ / v₁
= PV ln v₂ / v₁
= 200 x 10³ x .04 ln .1 / .04
8 x 10³ x .916
= 7.33 x 10³ J .
Answer:
All of the orbits were in the shape of an ellipse, with the orbited body on the inside of the ellipse.
Explanation:
Answer:
A. Kindly find attached free body diagram for your reference (smiles I guess I will make a terrible artist)
B. The collision is inelastic because both the husband and the wife moved together with same velocity as he grabs her on the waist
C. The general equation for conservation of momentum in terms of m 1, v 1, m 2, v 2, and final velocity vf
Say mass of husband is m1
Mass of the wife is m2
Velocity of the husband is v1
Velocity of the wife is v2
According to the conservation of momentum principle momentum before impact m1v1+m2v2 =momentum after impact Common velocity after impact (m1+m2)vf
The momentum equation is
m1v1+m2v2= (m1+m2)vf
D. To solve for vf we need to make it subject of formula
vf= {(m1v1) +(m2v2)}/(m1+m2)
E. Substituting our given data
vf=
{(1570*58)+(2550*54)}/(1570+2558)
vf=91060+137700/4120
vf=228760/4120
vf=55.52m/s
Their speed after collision is 55.52m/s
Answer:
Here's what I get
Explanation:
A. Distance between A and B.
h = -½gt²
The stones go faster the farther they fall.
Stone A has already reached 5 m when B is released.
When B reaches 5 m, A has dropped further and is falling even faster.
The distance between the stones increases with time.
Figure 1 shows this effect in a graph of height vs. time.
B. Speed of Stone B
v² = 2gh =2 × ( -9.81 m·s⁻²) × (-5 m) = 98.1 m·s⁻²
v = 9.9 m/s
The stone is travelling at 9.9 m/s when it reaches 5 m.
C. Velocity vs time
v = -gt
Both stones accelerate at the same rate.
When Stone B has reached 10 m at time t, Stone A is falling much faster.
Fig. 2 shows this in a graph of velocity vs time.
Answer:(a)891.64 N
(b)0.7
Explanation:
Mass of crate 
Crate slows down in 
initial speed 
inclination 
From Work-Energy Principle
Work done by all the Forces is equal to change in Kinetic Energy




change in kinetic energy

(b)Coefficient of sliding friction



and 

