Kepler's third law states that, for a planet orbiting around the Sun, the ratio between the cube of the radius of the orbit and the square of the orbital period is a constant:

(1)
where
r is the radius of the orbit
T is the period
G is the gravitational constant
M is the mass of the Sun
Let's convert the radius of the orbit (the distance between the Sun and Neptune) from AU to meters. We know that 1 AU corresponds to 150 million km, so

so the radius of the orbit is

And if we re-arrange the equation (1), we can find the orbital period of Neptune:

We can convert this value into years, to have a more meaningful number. To do that we must divide by 60 (number of seconds in 1 minute) by 60 (number of minutes in 1 hour) by 24 (number of hours in 1 day) by 365 (number of days in 1 year), and we get
Answer:
Total charge flow through the cooker is 21600 C
Explanation:
As we know that the current flow through the cooker is given by Ohm's law
here it is given as




now the charge flow through it is given as

total time is t = 8 hours


Ok so it would be late and the relative velocity would be 190 m/s because 200 m/s - 10 m/s is 190 m/s. Hope this helps.
Answer:
The amount of work that must be done to compress the gas 11 times less than its initial pressure is 909.091 J
Explanation:
The given variables are
Work done = 550 J
Volume change = V₂ - V₁ = -0.5V₁
Thus the product of pressure and volume change = work done by gas, thus
P × -0.5V₁ = 500 J
Hence -PV₁ = 1000 J
also P₁/V₁ = P₂/V₂ but V₂ = 0.5V₁ Therefore P₁/V₁ = P₂/0.5V₁ or P₁ = 2P₂
Also to compress the gas by a factor of 11 we have
P (V₂ - V₁) = P×(V₁/11 -V₁) = P(11V₁ - V₁)/11 = P×-10V₁/11 = -PV₁×10/11 = 1000 J ×10/11 = 909.091 J of work
R = 0.407Ω.
The resistance R of a particular conductor is related to the resistivity ρ of the material by the equation R = ρL/A, where ρ is the material resistivity, L is the length of the material and A is the cross-sectional area of the material.
To calculate the resistance R of a wire made of a material with resistivity of 3.2x10⁻⁸Ω.m, the length of the wire is 2.5m and its diameter is 0.50mm.
We have to use the equation R = ρL/A but first we have to calculate the cross-sectional area of the wire which is a circle. So, the area of a circle is given by A = πr², with r = d/2. The cross-sectional area of the wire is A = πd²/4. Then:
R =[(3.2x10⁻⁸Ω.m)(2.5m)]/[π(0.5x10⁻³m)²/4]
R = 8x10⁻⁸Ω.m²/1.96x10⁻⁷m²
R = 0.407Ω