answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LekaFEV [45]
2 years ago
12

An 80-g particle moving with an initial speed of 50 m/s in the positive x direction strikes and sticks to a 60-g particle moving

50 m/s in the positive y direction. how much kinetic energy is lost in this collision?
Physics
1 answer:
liubo4ka [24]2 years ago
8 0

The collision is a form of inelastic collision because the it forms a single mass after is collides. So it can be solve by momentum balance

( 0.08 kg * 50 m/s ) + ( 0.06 kg * 50 m/s) = ( 0.08 + 0.06 kg ) v

V = 50 m/s

So the kinetic energy lost is

KE = 0.5 (50 m/s)^2) *( 0.14 – 0.08kg )

KE = 75 J

You might be interested in
The rate of change of atmospheric pressure P with respect to altitude h is proportional to P, provided that the temperature is c
puteri [66]

Answer:

64.59kpa

Explanation:

See attachment

6 0
2 years ago
A device that uses electricity and magnetism to create motion is called a _________motor,magnet,generator . In a reverse process
lawyer [7]
A device that uses electricity and magnetism to create motion is called a "Motor" (which converts electric energy into mechanical energy) & <span>In a reverse process, a device that uses motion and magnetism can be used to create "Electromagnetism".

In short, 1st Blank = Motor
2nd Blank = Electromagnetism 

Hope this helps!</span>
5 0
2 years ago
Read 2 more answers
Describe the energy transformations that occur from the time a skydiver jumps out of a plane until landing on the ground.
Kisachek [45]
When the Skydiver jump out a plane, his Potential Energy is being converted or transform into Kinetic energy due to gravity. Hope this helps
6 0
2 years ago
Read 2 more answers
Compare and contrast the strength of the forces between two objects with a mass of 1 kg each, a charge of 10
DochEvi [55]

Answer:

Let's see the similarities between the two forces

* are proportional to the product of a magnitude, mass or charge

* They are inversely proportional to the square of the distance

* They are long-range forces since zero is not made up to an infinite distance. The gravitational force is always attractive, the electrical force can be attractive or repulsive.

The differences in them

* The electric force in much greater than the gravitational force

* The gravitational force is always attractive, the electrical force can be attractive or repulsive.

Explanation:

Let's start by calculating each force.

Gravitational force

             F =G \frac{m_1m_2}{r^2}  

let's calculate

             F = 6.67 10⁻¹¹  1  1 / 1²

             F = 6.67 10⁻¹¹ N

Electric force

             F = k \frac{q_1q_2}{r^2}  

indicates that the charge is q = 10 C

            F = 9 10⁹ 10 10 / 1²

            F = 9 10¹¹ N

Let's see the similarities between the two forces

* are proportional to the product of a magnitude, mass or charge

* They are inversely proportional to the square of the distance

* They are long-range forces since zero is not made up to an infinite distance. The gravitational force is always attractive, the electrical force can be attractive or repulsive.

The differences in them

* The electric force in much greater than the gravitational force

* The gravitational force is always attractive, the electrical force can be attractive or repulsive.

3 0
2 years ago
In ideal flow, a liquid of density 850 kg/m3 moves from a horizontal tube of radius 1.00 cm into a second horizontal tube of rad
Crank

Answer:

a)   Q = π r₁ √ 2ΔP / rho [r₁² / r₂² -1] , b) Q = 3.4 10⁻² m³ / s , c)      Q = 4.8 10⁻² m³ / s

Explanation:

We can solve this fluid problem with Bernoulli's equation.

         P₁ + ½ ρ v₁² + ρ g y₁ = P₂ + ½ ρ v₂² + ρ g y₂

With the two tubes they are at the same height y₁ = y₂

        P₁-P₂ = ½ ρ (v₂² - v₁²)

The flow rate is given by

         A₁ v₁ = A₂ v₂

         v₂ = v₁ A₁ / A₂

We replace

         ΔP = ½ ρ [(v₁ A₁ / A₂)² - v₁²]

         ΔP = ½ ρ v₁² [(A₁ / A₂)² -1]

Let's clear the speed

         v₁ = √ 2ΔP /ρ[(A₁ / A₂)² -1]

The expression for the flow is

           Q = A v

           Q = A₁ v₁

           Q = A₁ √ 2ΔP / rho [(A₁ / A₂)² -1]

The areas are

            A₁ = π r₁

            A₂ = π r₂

We replace

        Q = π r₁ √ 2ΔP / rho [r₁² / r₂² -1]

Let's calculate for the different pressures

      r₁ = d₁ / 2 = 1.00 / 2

      r₁ = 0.500 10⁻² m

      r₂ = 0.250 10⁻² m

b) ΔP = 6.00 kPa = 6 10³ Pa

      Q = π 0.5 10⁻² √(2 6.00 10³ / (850 (0.5² / 0.25² -1))

       Q = 1.57 10⁻² √(12 10³/2550)

        Q = 3.4 10⁻² m³ / s

c) ΔP = 12 10³ Pa

        Q = 1.57 10⁻² √(2 12 10³ / (850 3)

         Q = 4.8 10⁻² m³ / s

5 0
2 years ago
Other questions:
  • A receptor that contains many mechanically-gated ion channels would function BEST as a ____________.
    10·1 answer
  • Janelle wants to buy some strings of decorative lights for her home. She is trying to decide between two strings of lights that
    11·2 answers
  • A uniform drawbridge must be held at a 37 ∘ angle above the horizontal to allow ships to pass underneath. the drawbridge weighs
    8·2 answers
  • You are driving on a road where rain has left large pools of water, and you have driven through water that was several inches de
    6·2 answers
  • You are riding on a roller coaster that starts from rest at a height of 25.0 m and moves along a frictionless track. however, af
    8·2 answers
  • The drag force, fd, imposed by the surrounding air on a vehicle moving with velocity v is given by fd = cdaρv 2/2 where cd is a
    7·1 answer
  • According to the Revere and Black (2003) article, processes that result in an error probability of 0.000070 should be recognized
    8·1 answer
  • Suppose that we are designing a cardiac pacemaker circuit. The circuit is required to deliver pulses of 1ms duration to the hear
    13·1 answer
  • If a sound with frequency fs is produced by a source traveling along a line with speed vs. If an observer is traveling with spee
    10·1 answer
  • Ben walks 500 meters from his house to the corner store. He then walks back toward his house, but continues 200 meters past his
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!