Answer:
F = 0.535 N
Explanation:
Let's use the concepts of energy, at the highest and lowest point of the trajectory
Higher
Em₀ = U = mg y
Lower
= K = ½ m v²
Emo =
mg y = ½ m v2
v = √ 2gy
y = L - L cos θ
v = √ (2g L (1-cos θ))
Now let's use Newton's second law n at the lowest point where the acceleration is centripetal
F = ma
a = v² / r
In turning radius is the cable length r = L
F = m 2g (1-cos θ)
Let's calculate
F = 2 1.25 9.8 (1 - cos 12)
F = 0.535 N
Answer:
i(t) = (E/R)[1 - exp(-Rt/L)]
Explanation:
E−vR−vL=0
E− iR− Ldi/dt = 0
E− iR = Ldi/dt
Separating te variables,
dt/L = di/(E - iR)
Let x = E - iR, so dx = -Rdi and di = -dx/R substituting for x and di we have
dt/L = -dx/Rx
-Rdt/L = dx/x
interating both sides, we have
∫-Rdt/L = ∫dx/x
-Rt/L + C = ㏑x
x = exp(-Rt/L + C)
x = exp(-Rt/L)exp(C) A = exp(C) we have
x = Aexp(-Rt/L) Substituting x = E - iR we have
E - iR = Aexp(-Rt/L) when t = 0, i(0) = 0. So
E - i(0)R = Aexp(-R×0/L)
E - 0 = Aexp(0) = A × 1
E = A
So,
E - i(t)R = Eexp(-Rt/L)
i(t)R = E - Eexp(-Rt/L)
i(t)R = E(1 - exp(-Rt/L))
i(t) = (E/R)(1 - exp(-Rt/L))
Answer:
The distance the piece travel in horizontally axis is
L=3.55m
Explanation:





Now the angular velocity is the blade speed so:
assuming no air friction effects affect blade piece:
time for blade piece to fall to floor

Now is the same time the piece travel horizontally

blade piece travels HORIZONTALLY = (24.5)(0.397) = 9.73 m ANS
by making qualitative observations about the sodium hydroxide and phenolphthalein in solution
by comparing the given solution to other familiar solutions containing phenolphthalein
by designing an experiment to test phenolphthalein with other solutions