Answer:
a) xf = 5.1 m
b) u = 0.304
c) x = 10.3 m
Explanation:
we will use the following formula:
u = 0.1 + A*x
Si x = 12.5 m, u = 0.6
Clearing A:
A = 0.5/12.5 = 0.04 m^-1
a) we have to:
W = Ekf - Eki
where Ekf = final kinetic energy
Eki = initial kinetic energy
9.8*(0.1xf + ((0.04*xf^2)/(2))) = (4.5^2)/(2)
Clearing xf, we have:
xf = 5.1 m
b) Replacing values for u:
u = 0.1 + (0.04*5.1) = 0.304
c) Wf = Ekf - Eki
-u*m*x*g = 0 - (m*v^2)/2
Clearing x:
x = v^2/(2*u*g) = (4.5^2)/(2*0.1*9.8) = 10.3 m
The momentum of an object is equivalent to the product of the object's mass and velocity. Computing the momentum for each ball:
A- 15 * 0.7 = 10.5
B- 5.5 * 1.2 = 6.6
C- 5.0 * 2.5 = 12.5
D- 1.5 * 5.0 = 7.5
Therefore, ball C has the greatest momentum.
Answer:
Answered
Explanation:
1 and 3 are necessary
Every bit of force applied to the bumper will be transmitted to the cart EXCEPT for the force needed to accelerate the bumper. This is the net force on the bumper.
If the bumper was heavy then a significant amount of force might be needed to accelerate the bumper so the amount transmitted to the cart would be substantially reduced.
If the net force on the bumper is small then the amount transmitted to the cart is almost the entire force applied.
Answer:
<h2>
The potential difference increases </h2>
Explanation:
from the relation 
where E= electric field (force per coulomb)
V= voltage
d= distance
Hence the voltage is going to be V= E×d.
Therefore this means that increasing the distance increases the voltage.
W=ΔKE , W=-5000j
KEinitial=(1/2)mv² , KEfinal=0j
ΔKE=-(1/2)mv²
-5000=-(1/2)(100kg)v²
v=10 m/s