<span>These are inert gases, so we can assume they don't react with one another. Because the two gases are also subject to all the same conditions, we can pretend there's only "one" gas, of which we have 0.458+0.713=1.171 moles total. Now we can use PV=nRT to solve for what we want.
The initial temperature and the change in temperature. You can find the initial temperature easily using PV=nRT and the information provided in the question (before Ar is added) and solving for T.
You can use PV=nRT again after Ar is added to solve for T, which will give you the final temperature. The difference between the initial and final temperatures is the change. When you're solving just be careful with the units!
SIDE NOTE: If you want to solve for change in temperature right away, you can do it in one step. Rearrange both PV=nRT equations to solve for T, then subtract the first (initial, i) from the second (final, f):
PiVi=niRTi --> Ti=(PiVi)/(niR)
PfVf=nfRTf --> Tf=(PfVf)/(nfR)
ΔT=Tf-Ti=(PfVf)/(nfR)-(PiVi)/(niR)=(V/R)(Pf/nf-Pi/ni)
In that last step I just made it easier by factoring out the V/R since V and R are the same for the initial and final conditions.</span>
Answer:
75 m
Explanation:
The horizontal motion of the projectile is a uniform motion with constant speed, since there are no forces acting along the horizontal direction (if we neglect air resistance), so the horizontal acceleration is zero.
The horizontal component of the velocity of the projectile is

and it is constant during the motion;
the total time of flight is
t = 5 s
Therefore, we can apply the formula of the uniform motion to find the horizontal displacement of the projectile:

As velocities are tangent, the value of both Particle A and Particle B would be same for that point O (Intersecting point)
a = v / t
Here, v = 7, t = 6
So, a = 7/6
a = 1.17
As the graph is decreasing, value of acceleration would be negative.
So, a = -1.17 m/s²
In short, Your Answer would be Option C
Hope this helps!
The question is incomplete as it does not have the options which are:
deciduous forest
taiga (boreal forest)
temperate rainforest
tropical rainforest
Answer:
Taiga (boreal forest)
Explanation:
A Biome refers to the habitat which is occupied by flora and fauna living in similar conditions. These biomes are distinguished based on many features like precipitation, temperature and many other physical factors.
In the given question, the biome which receives an annual rainfall of 35 to 100 cm annually and is mostly covered by the coniferous trees is known as "Taiga biome" which is also known as Boreal forest.
The Taiga biome is one of the largest terrestrial biomes which is present in Eurasia and North America. The biome is characterised by the conifers trees and therefore is also known as the Coniferous trees.
Thus, Taiga (boreal forest) is the correct answer.
Answer:
H=1020.12m
Explanation:
From a balance of energy:
where H is the height it reached, d is the distance it traveled along the ramp and Ff = μk*N.
The relation between H and d is given by:
H = d*sin(30) Replace this into our previous equation:

From a sum of forces:
N -mg*cos(30) = 0 => N = mg*cos(30) Replacing this:
Now we can solve for d:
d = 2040.23m
Thus H = 1020.12m