Answer:
Yes
Explanation:
p = momentum of photon
E = energy of photon
c = velocity of light
Units of p = kg m /s
Units of E = kg m^2 / s^2
Units of E / p = {kg m^2 / s^2} / {kg m /s} = m/s
It is the unit of speed, so by the division of energy to the momentum, we get the speed. yes it is correct.
Answer:
1.) Magnitude = 5596 N
2.) Direction = 60 degrees
Explanation: You are given that the breakdown vehicle A is exerting a force of 4000 N at angle 45 degree to the vertical and breakdown vehicle B is exerting a force of 2000 N
Let us resolve the two forces into X and Y component
Sum of the forces in the X - component will be 4000 × cos 45 = 2828.43 N
Sum of the forces in the Y - component will be 2000 + ( 4000 × sin 45 )
= 2000 + 2828.43
= 4828.43 N
The resultant force R will be
R = sqrt ( X^2 + Y^2 )
Substitutes the forces at X component and Y component into the formula
R = sqrt ( 2828.43^2 + 4828.43^2 )
R = sqrt ( 31313752.53 )
R = 5595.87 N
The direction will be
Tan Ø = Y/X
Substitute Y and X into the formula
Tan Ø = 4828.43 / 2828.43
Tan Ø = 1.707106
Ø = tan^-1( 1.707106 )
Ø = 59.64 degree
Therefore, approximately, the magnitude and direction of the resultant force on the truck are 5596 N and 60 degree respectively.
Answer:
Power output: W=1426.9MW
Explanation:
The power output of the falls is given mainly by its change in potential energy:

The potential energy for any point can be calculated as:

If we consider the base of the falls to be the reference height, at point 2 h=0, so P2=0, and height at point 1 equals 52m:

If we replace m with the mass rate M we obtain the rate of change in potential energy over time, so the power generated:

Answer:
2100 J
Explanation:
Parameters given:
Force acting on the object, F = 420 N
Distance moved by object, d = 5m
The change in kinetic energy of an object is equal to the work done by a force acting on the object:
W = F * d
∆KE = F * d
∆KE = 420 * 5
∆KE = 2100 J
Answer:
The displacement of the spring due to weight is 0.043 m
Explanation:
Given :
Mass
Kg
Spring constant 
According to the hooke's law,

Where
force,
displacement
Here,
(
)
N
Now for finding displacement,

Here minus sign only represent the direction so we take magnitude of it.

m
Therefore, the displacement of the spring due to weight is 0.043 m