Correct answer: D). Working Memory
The short term memory is the part of the memory system in which the information is stored for 30 seconds. However, it can be increased by rehearsal. Short term memory is also called active memory or the working memory. The working memory is the part of the cognitive system that is responsible for storing information temporarily for processing. It is important for reasoning.
Hence, the correct answer would be option D.
Answer:
Terminal velocity of object = 12.58 m/s
Explanation:
We know that the terminal velocity is attained when drag force and gravitational force are of the same magnitude.
Gravitational force = mg = 80 * 9.8 = 784 N
Drag force = 
Equating both, we have

So v = 12.58 m/s or v = -15.58 m/s ( not possible)
So terminal velocity of object = 12.58 m/s
Impulse is equal to change in momentum. So if impulse is 2000 then to solve for new velocity we just set it equal to equation for momentum.
First find original momentum by p=mv
p=1000*20=20000
So then taking that value minus the impulse since it was in opposite direction of original momentum it will slow it down some. To find new velocity we just take
20000-2000=18000=mv
v=18000/1000 =18m/s
Hope this helps!! Any questions please ask!!
Thank you!
<h3>Question:</h3>
A 2.0-cm length of wire centered on the origin carries a 20-A current directed in the positive y direction. Determine the magnetic field at the point x = 5.0m on the x-axis.
<h3>
Answer:</h3>
1.6nT [in the negative z direction]
<h2>
Explanation:</h2>
The magnetic field, B, due to a distance of finite value b, is given by;
B = (μ₀IL) / (4πb
) -----------(i)
Where;
I = current on the wire
L = length of the wire
μ₀ = magnetic constant = 4π × 10⁻⁷ H/m
From the question,
I = 20A
L = 2.0cm = 0.02m
b = 5.0m
Substitute the necessary values into equation (i)
B = (4π × 10⁻⁷ x 20 x 0.02) / (4π x 5.0
)
B = (10⁻⁷ x 20 x 0.02) / (5.0
)
B = (10⁻⁷ x 20 x 0.02) / (5.0
)
B = (10⁻⁷ x 20 x 0.02) / (25.0)
B = 1.6 x 10⁻⁹T
B = 1.6nT
Therefore, the magnetic field at the point x = 5.0m on the x-axis is 1.6nT.
PS: Since the current is directed in the positive y direction, from the right hand rule, the magnetic field is directed in the negative z-direction.
The radioactive isotope that would take the least amount of time to become stable is rubidium-91. This is because this isotope is the most stable compared to the rest. This was determined by subtracting its atomic mass by its atomic number. The isotope with the least number of difference is the most stable, while the one with the greatest difference is the most unstable.
Difference:
Rubidium: 54 (most stable)
Iodine: 78
Cesium: 80
Uranium: 146 (least stable)