answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lara31 [8.8K]
1 year ago
6

A long thin uniform rod of length 1.50 m is to be suspended from a frictionless pivot located at some point along the rod so tha

t its pendulum motion takes 3.00 s. How far from the center of the rod should the pivot be located?
Physics
1 answer:
Dvinal [7]1 year ago
3 0

Answer:

0.087 m

Explanation:

Length of the rod, L = 1.5 m

Let the mass of the rod is m and d is the distance between the pivot point and the centre of mass.

time period, T = 3  s

the formula for the time period of the pendulum is given by

T = 2\pi \sqrt{\frac{I}{mgd}}    .... (1)

where, I is the moment of inertia of the rod about the pivot point and g is the acceleration due to gravity.

Moment of inertia of the rod about the centre of mass, Ic = mL²/12

By using the parallel axis theorem, the moment of inertia of the rod about the pivot is

I = Ic + md²

I = \frac{mL^{2}}{12}+ md^{2}

Substituting the values in equation (1)

3 = 2 \pi \sqrt{\frac{\frac{mL^{2}}{12}+ md^{2}}{mgd}}

9=4\pi^{2}\times \left ( \frac{\frac{L^{2}}{12}+d^{2}}{gd} \right )

12d² -26.84 d + 2.25 =  0

d=\frac{26.84\pm \sqrt{26.84^{2}-4\times 12\times 2.25}}{24}

d=\frac{26.84\pm 24.75}{24}

d = 2.15 m , 0.087 m

d cannot be more than L/2, so the value of d is 0.087 m.

Thus, the distance between the pivot and the centre of mass of the rod is 0.087 m.

You might be interested in
An engineer is designing a process for a new transistor. She uses a vacuum chamber to bombard a thin layer of silicon with ions
adelina 88 [10]

Answer:

E=5.7\times 10^{-3}\ V/m

Explanation:

Given that

m_p=5.18\times 10^{-26}\ kg

re= 46 cm

Vp= 180 m/s

We know that

E=\dfrac{\Delta V}{r}

\Delta V=\dfrac{1}{4}\dfrac{m_pv_p^2}{e}

So

E=\dfrac{1}{4}\dfrac{m_pv_p^2}{e.r_e}

Now by putting the all given values in the questions

E=\dfrac{1}{4}\times \dfrac{5.18\times 10^{-26}\times 180^2}{1.6\times 10^{-19}\times 0.46}

E=5.7\times 10^{-3}\ V/m

So the average electric field is E=5.7\times 10^{-3}\ V/m.

6 0
2 years ago
A rubber ball with a mass 0.20 kg is dropped vertically from a height of 1.5 m above the floor. The ball bounces off of the floo
Digiron [165]
Potential Energy = mass * Hight * acceleration of gravity
PE=hmg
PE = 1.5 * .2 * 9.81
PE = 2.943
it lost .6 so 2.943 - .6 = 2.343
now your new energy is 2.343 so solve for height
2.343 = mhg
2.334 = .2 * h * 9.81
h = 1.194
the ball after the bounce only went up 1.194m
8 0
2 years ago
The drag force F on a boat varies jointly with the wet surface area A of the boat and the square of the speed s of the boat. A b
Advocard [28]

Answer:

Wet surfaces areaA=+25.3ft^2

Explanation:

Using F= K×A× S^2

Where F= drag force

A= surface area

S= speed

Given : F=996N S=20mph A= 83ft^2

K = F/AS^2=996/(83×20^2)

K= 996/33200 = 0.03

1215= (0.03)× A × 18^2

1215=9.7A

A=1215/9.7=125.3ft^2

7 0
2 years ago
The inventor of the photographic process in which a photograph produced without a negative by exposing objects to light on light
Nikolay [14]
<span>A. Man Ray --------------------</span>
7 0
1 year ago
Read 2 more answers
On a snowy day, when the coefficient of friction μs between a car’s tires and the road is 0.50, the maximum speed that the car c
Nana76 [90]

Answer:

28.1 mph

Explanation:

The force of friction acting on the car provides the centripetal force that keeps the car in circular motion around the curve, so we can write:

F=\mu mg = m \frac{v^2}{r} (1)

where

\mu is the coefficient of friction

m is the mass of the car

g = 9.8 m/s^2 is the acceleration due to gravity

v is the maximum speed of the car

r is the radius of the trajectory

On the snowy day,

\mu=0.50\\v = 20 mph = 8.9 m/s

So the radius of the curve is

r=\frac{v^2}{\mu g}=\frac{(8.9)^2}{(0.50)(9.8)}=16.1 m

Now we can use this value and re-arrange again the eq. (1) to find the maximum speed of the car on a sunny day, when \mu=1.0. We find:

v=\sqrt{\mu g r}=\sqrt{(1.0)(9.8)(8.9)}=12.6 m/s=28.1 mph

7 0
2 years ago
Read 2 more answers
Other questions:
  • A conveyer belt moves a 40 kg box at a velocity of 2 m/s. What is the kinetic energy of the box while it is on the conveyor belt
    14·2 answers
  • A beaker contain 200mL of water<br> What is its volume in cm3 and m3
    5·2 answers
  • Short-range forecasts tends to ________ longer-range forecasts.
    5·1 answer
  • There is a 120 V circuit in a house that is a dedicated line for the dishwasher, meaning the dishwasher is the only resistor on
    12·2 answers
  • A vibrating standing wave on a string radiates a sound wave with intensity proportional to the square of the standing-wave ampli
    15·1 answer
  • A paper clip is made of wire 0.5 mm in diameter. If the original material from which the wire is made is a rod 25 mm in diameter
    9·1 answer
  • The robot arm is elevating and extending simultaneously. At a given instant, θ = 30°, ˙ θ = 10 deg / s = constant θ˙=10 deg/s=co
    6·1 answer
  • In a standard tensile test a steel rod of 22-mm diameter is subjected to a tension force of 75kN. Knowing that v = 0.30 and E =
    13·2 answers
  • Did the kinetic frictional coefficient (for the wood/aluminum and felt/aluminum cases) vary with area of contact
    8·1 answer
  • A 0.111 kg hockey puck moving at 55 m/s is caught by a 80 kg goalie at rest. With what speed does the goalie slide on the (frict
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!