answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lara31 [8.8K]
1 year ago
6

A long thin uniform rod of length 1.50 m is to be suspended from a frictionless pivot located at some point along the rod so tha

t its pendulum motion takes 3.00 s. How far from the center of the rod should the pivot be located?
Physics
1 answer:
Dvinal [7]1 year ago
3 0

Answer:

0.087 m

Explanation:

Length of the rod, L = 1.5 m

Let the mass of the rod is m and d is the distance between the pivot point and the centre of mass.

time period, T = 3  s

the formula for the time period of the pendulum is given by

T = 2\pi \sqrt{\frac{I}{mgd}}    .... (1)

where, I is the moment of inertia of the rod about the pivot point and g is the acceleration due to gravity.

Moment of inertia of the rod about the centre of mass, Ic = mL²/12

By using the parallel axis theorem, the moment of inertia of the rod about the pivot is

I = Ic + md²

I = \frac{mL^{2}}{12}+ md^{2}

Substituting the values in equation (1)

3 = 2 \pi \sqrt{\frac{\frac{mL^{2}}{12}+ md^{2}}{mgd}}

9=4\pi^{2}\times \left ( \frac{\frac{L^{2}}{12}+d^{2}}{gd} \right )

12d² -26.84 d + 2.25 =  0

d=\frac{26.84\pm \sqrt{26.84^{2}-4\times 12\times 2.25}}{24}

d=\frac{26.84\pm 24.75}{24}

d = 2.15 m , 0.087 m

d cannot be more than L/2, so the value of d is 0.087 m.

Thus, the distance between the pivot and the centre of mass of the rod is 0.087 m.

You might be interested in
The asteroid belt is a region between Mars and Jupiter that contains a multitude of large rocks and planetary fragments called a
olga2289 [7]
The best estimate of the orbital period of a typical asteroid is 9.0 earth years. 
7 0
1 year ago
If you are lying down and stand up quickly, you can get dizzy or feel faint. This is because the blood vessels don't have time t
sammy [17]

Complete Question

If you are lying down and stand up quickly, you can get dizzy or feel faint. This is because the blood vessels don’t have time to expand to compensate for the blood pressure drop. If your brain is 0.4 m higher than your heart when you are standing, how much lower is your blood pressure at your brain than it is at your heart? The density of blood plasma is about 1025 kg/m3 and a typical maximum (systolic) pressure of the blood at the heart is 120 mm of Hg (= 0.16 atm = 16 kP = 1.6 × 104 N/m2).

Answer:

The pressure at the brain is P_b  = 89.872 \ mm \ of \ Hg

Explanation:

Generally is mathematically denoted as

                  P = \rho gh

Substituting 1025 kg/m^3 for \rho(the  density) , 9.8 m/s^2 for g (acceleration due to gravity) , 0.4m for h (the height )

We have that the pressure difference between the heart and the brain is

              P = 1025 * 9.8 *0.4

                  = 4018 N/m^2

But the pressure of blood at the heart is given as

               P_h=120 mm of Hg = 120 * 133 =  1.59*10^3Pa

Now the pressure at the brain is mathematically evaluated as

                 P_b = P_h - P

                     = 1.596*10^4 - 4018

                     = 11982 N/m^2

                      P_b= \frac{11982}{133} = 89.872 \ mm \ of \ Hg

   

     

3 0
2 years ago
A guitar string has a linear density of 8.30 ✕ 10−4 kg/m and a length of 0.660 m. the tension in the string is 56.7 n. when the
Sedbober [7]
Ans: Beat Frequency = 1.97Hz

Explanation:
The fundamental frequency on a vibrating string is 

f =   \sqrt{ \frac{T}{4mL} }<span>  -- (A)</span>

<span>here, T=Tension in the string=56.7N,
L=Length of the string=0.66m,
m= mass = 8.3x10^-4kg/m * 0.66m = 5.48x10^-4kg </span>


Plug in the values in Equation (A)

<span>so </span>f = \sqrt{ \frac{56.7}{4*5.48*10^{-4}*0.66} }<span> = 197.97Hz </span>

<span>the beat frequency is the difference between these two frequencies, therefore:
Beat frequency = 197.97 - 196.0 = 1.97Hz
-i</span>
3 0
2 years ago
Read 2 more answers
A block of mass m begins at rest at the top of a ramp at elevation h with whatever PE is associated with that height. The block
melomori [17]

This question is incomplete, the complete question is;

A block of mass m begins at rest at the top of a ramp at elevation h with whatever PE is associated with that height. The block slides down the ramp over a distance d until it reaches the bottom of the ramp.

How much of its original total energy (in J) survives as KE when it reaches the ground? m = 9.9 kg h = 4.9 m d = 5 m μ = 0.3 θ = 36.87°

Answer:

the amount of its original total energy (in J) that survives as KE when it reaches the ground will is 358.975 J

Explanation:

Given that;

m = 9.9 kg

h = 4.9 m

d = 5 m

μ = 0.3

θ = 36.87°

Now from conservation of energy, the energy is;

Et = mgh

we substitute

Et = 9.9 × 9.8 × 4.9

= 475.398 J

Also the loss of energy i

E_loss = (umg cosθ) d

we substitute

E_loss  = 0.3 × 9.9 × 9.8 × cos36.87°  × 5

= 116.423 J

so the amount of its original total energy (in J) that survives as KE when it reaches the ground will be

E = Et - E_loss

E = 475.398 J - 116.423 J

E = 358.975 J

5 0
1 year ago
Temperature and kinetic energy are ___________ proportional. adirectly directly indirectly 2. Heat is a measure of _____________
Usimov [2.4K]

Explanation:

It is known that relation between kinetic energy and temperature is as follows.

        K.E \propto \frac{3}{2}kT

Hence, kinetic energy is directly proportional to temperature.

Thermal energy is defined as the energy present within the molecules of an object due to the motion of particles. Basically, thermal energy is internal energy of an object.

Thus, we can conclude that:

  • Temperature and kinetic energy are directly proportional.
  • Heat is a measure of thermal energy.
  • Temperature is proportional to the total kinetic energy.
7 0
2 years ago
Read 2 more answers
Other questions:
  • During action potential, the electrical charge inside the neuron is __________ the electrical charge outside the neuron.
    9·2 answers
  • A 29 cm pencil is placed 35cm in front of a convex lens and is illuminated by a spotlight. the focal point of the lens is 28cm f
    8·1 answer
  • A small child gives a plastic frog a big push at the bottom of a slippery 2.0 meter long, 1.0 meter high ramp, starting it with
    14·1 answer
  • At a local swimming pool, the diving board is elevated h = 5.5 m above the pool's surface and overhangs the pool edge by L = 2 m
    12·1 answer
  • Which of the following is a characteristic of electromagnetic waves?
    8·2 answers
  • A fan is to accelerate quiescent air to a velocity of 12.5 m/s at a rate of 9 m3/s. Determine the minimum power that must be sup
    12·1 answer
  • Each metal is illuminated with 400 nm (3.10 eV) light. Rank the metals on the basis of the maximum kinetic energy of the emitted
    14·1 answer
  • Two rigid rods are oriented parallel to each other and to the ground. The rods carry the same current in the same direction. The
    8·1 answer
  • Un cable está tendido sobre dos postes colocados con una separación de 10 m. A la mitad del cable se cuelga un letrero que provo
    14·1 answer
  • A 817 kg car has four 8.91 kg wheels. When the car is moving, what fraction of the total kinetic energy of the car is due to rot
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!