<span>f2 = f0/4
The gravity from the planet can be modeled as a point source at the center of the planet with all of the planet's mass concentrated at that point. So the initial condition for f0 has the satellite at a distance of 2r, where r equals the planet's radius.
The expression for the force of gravity is
F = G*m1*m2/r^2
where
F = Force
G = Gravitational constant
m1,m2 = masses involved
r = distance between center of masses.
Now for f2, the satellite has an altitude of 3r and when you add in the planet's radius, the distance from the center of the planet is now 4r. When you compare that to the original distance of 2r, that will show you that the satellite is now twice as far from the center of the planet as it was when it started. So let's compare the gravitational attraction, before and after.
f0 = G*m1*m2/r^2
f2 = G*m1*m2/(2r)^2
f2/f0 = (G*m1*m2/(2r)^2) / (G*m1*m2/r^2)
The Gm m1, and m2 terms cancel, so
f2/f0 = (1/(2r)^2) / (1/r^2)
f2/f0 = (1/4r^2) / (1/r^2)
And the r^2 terms cancel, so
f2/f0 = (1/4) / (1/1)
f2/f0 = (1/4) / 1
f2/f0 = 1/4
f2 = f0*1/4
f2 = f0/4
So the gravitational force on the satellite after tripling it's altitude is one fourth the original force.</span>
Answer:
Ft
Explanation:
We are given that
Initial velocity=u=0
We have to find the magnitude of p of the momentum of the particle at time t.
Let mass of particle=m
Applied force=F
Acceleration, 
Final velocity , 
Substitute the values

We know that
Momentum, p=mv
Using the formula

<h2>Answer:</h2>
<u>This term shows the </u><u>mass of the space shuttle</u>
<h2>Explanation:</h2>
We know that the mass of the Earth is 5.972 × 10^24 kg. Similarly the sum of mass of earth and the mass of shuttle must be a greater number as compared to the number given. It simply means that the mass of earth is itself 5.972 × 10^24 kg and the value given is 3 × 105 kg so it is obvious that if was the sum then it must be greater than the mass of earth. Therefore we can say that this not the mass of earth, neither the sum of mass of earth and shuttle, but this is only the mass of space shuttle which is the last multiple choice.
<h3><u>Answer;</u></h3>
= 1.256 m
<h3><u>Explanation;</u></h3>
We can start by finding the spring constant
F = k*y
Therefore; k = F/y = m*g/y
= 0.40kg*9.8m/s^2/(0.76 - 0.41)
= 11.2 N/m
Energy is conserved
Let A be the maximum displacement
Therefore; 1/2*k*A^2 = 1/2*k*(1.20 - 0.41)^2 + 1/2*m*v^2
Thus; A = sqrt((1.20 - 0.55)^2 + m/k*v^2)
= sqrt((1.20 -0.55)^2 + 0.40/9.8*1.6^2)
= 0.846 m
Thus; the length will be 0.41 + 0.846 = 1.256 m
That prediction is not correct because Xenon is extremely stable; column 18 of the periodic table contains the noble gasses, which are stable because their outer-most energy levels are completely filled. Having the octet (8) of valence electrons means that the element no longer needs to lose or gain electrons to gain stability.
The column 17 elements are unstable because they only have one valence electron short of the stable octet configuration of the noble gasses.