Answer:
a. 
b. 
Explanation:
The inertia can be find using
a.





now to find the torsion constant can use knowing the period of the balance
b.
T=0.5 s

Solve to K'


Answer:
The velocity of the truck after the collision is 20.93 m/s
Explanation:
It is given that,
Mass of car, m₁ = 1200 kg
Initial velocity of the car, 
Mass of truck, m₂ = 9000 kg
Initial velocity of the truck, 
After the collision, velocity of the car, 
Let
is the velocity of the truck immediately after the collision. The momentum of the system remains conversed.




So, the velocity of the truck after the collision is 20.93 m/s. Hence, this is the required solution.
Answer:
When reviewing the results, the correct one is C
Explanation:
The right hand rule is widely useful in knowing the direction of force in a maganto field,
The ruler sets the thumb in the direction of the positive particle, the fingers extended in the direction of the magnetic field, and the palm in the direction of the force.
Let's apply this to our exercise.
The thumb that is the speed goes in the negative direction of the axis,
The two extended that the magnetic field look negative x,
The span points entered the dear sheet the negative the Z axis
When reviewing the results, the correct one is C
Answer:
The magnitude of the centripetal acceleration during the turn is 
Explanation:
Given :
Speed to the airplane in circular path , v = 115 m/s.
Time taken by plane to turn , t= 15 s.
Also , the plane turns from east to south i.e. quarter of a circle .
Therefore, time taken to complete whole circle is , 
Now , Velocity ,

Also , we know :
Centripetal acceleration ,

Putting all values we get :

Hence , this is the required solution .
Answer:
energy carried by the current is given by the pointyng vector
Explanation:
The current is defined by
i = dQ / dt
this is the number of charges per unit area over time.
The movement of the charge carriers (electrons) is governed by the applied potential difference, when the filament has a movement the drag speed of these moving electrons should change slightly.
But the energy carried by the current is given by the pointyng vector of the electromagnetic wave
S = 1 / μ₀ EX B
It moves at the speed of light and its speed depends on the properties of the doctor and is not disturbed by small changes in speed, therefore the current in the circuit does not change due to this movement