Answer:
59cm
Explanation:
angular velocity = 0.8 rad/s
linear velocity = angular velocity * radius
=0.8rad/s * 5m
= 4 m/s
wavelength = (V + U)/F
where,
V is the velocity of the wave
U is the velocity of the source
F is the frequency of the source.
wavelength = (350 m/s + 4 m/s ) / 600 Hz
Wavelength = 0.59m or 59 cm
1) weight of the box: 980 N
The weight of the box is given by:

where m=100.0 kg is the mass of the box, and
is the acceleration due to gravity. Substituting in the formula, we find

2) Normal force: 630 N
The magnitude of the normal force is equal to the component of the weight which is perpendicular to the ramp, which is given by

where W is the weight of the box, calculated in the previous step, and
is the angle of the ramp. Substituting, we find

3) Acceleration: 
The acceleration of the box along the ramp is equal to the component of the acceleration of gravity parallel to the ramp, which is given by

Substituting, we find

Answer:
Part(a): The angular acceleration is
.
Part(b): The angular displacement is
.
Explanation:
Part(a):
If
be the initial angular speed, final angular speed and angular acceleration of the centrifuge respectively, then from rotational kinematic equation, we can write

where '
' is the time taken by the centrifuge to increase its angular speed.
Given,
,
and
. From equation (
), the angular acceleration is given by

Part(b):
Also the angular displacement (
) can be written as

The atmospheric P is greater than the P in the flask, since
the Hg level is lacking down lower on the side open to the atmosphere.
43.4 cm x (10 mm / 1 cm) = 435 mm
the density of Hg is 13.6 / 0.791 = 17.2 times better than the liquid in the
manometer. This means that 1 mmHg = 17.2 mm of manometer liquid.
435 mm manometer liquid x (1 mm Hg / 17.2 mm manometer liquid) = 25.3 mm
Hg
The pressure in the flask is 755 - 25.3 = 729.7 mmHg.
729.7 mmHg x (1 atm / 760 mmHg ) = 0.960 atm.