answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Maslowich
2 years ago
14

A small child gives a plastic frog a big push at the bottom of a slippery 2.0 meter long, 1.0 meter high ramp, starting it with

a speed of 5.0 m/s. What is the frog's speed as it flies off the top of the ramp?

Physics
1 answer:
valentinak56 [21]2 years ago
7 0
Refer to the diagram shown below.

Because the ramp is slippery, ignore dynamic friction.
Let m =  the mass of the frog.
g = 9.8 m/s²

The KE (kinetic energy) at the bottom of the ramp is
KE₁ = (1/2)*(m kg)*(5 m/s)² = 12.5 m J

Let v =  the velocity at the top of the ramp.
The KE at the top of the ramp is
KE₂ = (1/2)*m*v²= 0.5 mv² J
The PE (potential energy) at the top of the ramp relative to the bottom is
PE₂ = (m kg)*(9.8 m/s²)*(1 m) = 9.8m J

Conservation of energy requires that
KE₁ = KE₂ + PE₂
12.5m = 0.5mv² + 9.8m
0.5v² = 2.7
v = 2.324 m/s

Answer: 2.324 m/s

You might be interested in
Consider the waveform expression. y (x, t) = ym sin (0.333x + 5.36 + 585t) The transverse displacement (y) of a wave is given as
Sonja [21]

Explanation:

The waveform expression is given by :

y(x,t)=y_m\ sin(0.333x+5.36+585t)...........(1)

Where

y is the position

t is the time in seconds

The general waveform equation is given by :

y(x,t)=y_m\ sin(kx+\phi+\omega t)..........(2)

Where

k=\dfrac{2\pi}{\lambda}

\omega=2\pi f

On comparing equation (1) and (2) we get :

0.333=\dfrac{2\pi}{\lambda}

\lambda=18.86\ m

585=2\pi f

f = 93.10 Hz

Time period, T=\dfrac{1}{f}

T=\dfrac{1}{0.010}

T = 0.010 s

Phase constant, \phi=5.36\ radian

Hence, this is the required solution.

8 0
2 years ago
A spring with a spring constant of 0.70 N/m is stretched 1.5 m. What was the force?
Talja [164]

Answer:

1.05 N

Explanation:

K = 0.7 N/m

e = 1.5 m

F = ?

from Hooke's law of elasticity

F = Ke

= 0.7×1.5

= 1.05 N

5 0
2 years ago
An automobile accelerates from zero to 30 m/s in 6.0 s. The wheels have a diameter of 0.40 m. What is the average angular accele
leva [86]

To solve this problem we will use the concepts related to angular motion equations. Therefore we will have that the angular acceleration will be equivalent to the change in the angular velocity per unit of time.

Later we will use the relationship between linear velocity, radius and angular velocity to find said angular velocity and use it in the mathematical expression of angular acceleration.

The average angular acceleration

\alpha = \frac{\omega_f - \omega_0}{t}

Here

\alpha = Angular acceleration

\omega_{f,i} = Initial and final angular velocity

There is not initial angular velocity,then

\alpha = \frac{\omega_f}{t}

We know that the relation between the tangential velocity with the angular velocity is given by,

v = r\omega

Here,

r = Radius

\omega = Angular velocity,

Rearranging to find the angular velocity

\omega = \frac{v}{r}}

\omega = \frac{30}{0.20} \rightarrow Remember that the radius is half te diameter.

Now replacing this expression at the first equation we have,

\alpha = \frac{30}{0.20*6}

\alpha = 25 rad /s^2

Therefore teh average angular acceleration of each wheel is 25rad/s^2

3 0
2 years ago
A goat enclosure is in the shape of a right triangle. One leg of the enclosure is built against the side of the barn. The other
san4es73 [151]

Answer:

16,18,22

Or

1,3,7

Explanation:

The detailed explanation is contained in the image attached. The lengths are found using Pythagoras theorem and the two lengths reflects the two values of x yielded by the quadratic equation

8 0
2 years ago
A steel tank of weight 600 lb is to be accelerated straight upward at a rate of 1.5 ft/sec2. Knowing the magnitude of the force
VikaD [51]

Answer:

a) the values of the angle α is 45.5°

b) the required magnitude of the vertical force, F is 41 lb

Explanation:

Applying the free equilibrium equation along x-direction

from the diagram

we say

∑Fₓ = 0

Pcosα - 425cos30° = 0

525cosα - 368.06 = 0

cosα = 368.06/525

cosα = 0.701

α = cos⁻¹ (0.701)

α = 45.5°

Also Applying the force equation of motion along y-direction

∑Fₓ = ma

Psinα + F + 425sin30° - 600 = (600/32.2)(1.5)

525sin45.5° + F + 212.5 - 600 = 27.95

374.46 + F + 212.5 - 600 = 27.95

F - 13.04 = 27.95

F = 27.95 + 13.04

F = 40.99 ≈ 41 lb

8 0
2 years ago
Other questions:
  • A plane initially traveling at 200 m/s due west experiences a 10 m/s head wind coming from the opposite direction. A). What will
    14·1 answer
  • An amusement park ride spins you around in a circle of radius 2.5 m with a speed of 8.5 m/s. If your mass is 75 kg, what is the
    5·2 answers
  • A tennis player who is recovering from an ankle injury and is not allowed to change directions can maintain her cardio fitness l
    12·2 answers
  • Part a consider another special case in which the inclined plane is vertical (θ=π/2). in this case, for what value of m1 would t
    7·1 answer
  • If a young protostar with a disk is rotating and shrinking. how much faster is it rotating after its size has decreased by a fac
    11·1 answer
  • Select the correct answer from each drop-down menu. A baking tray is made of metal because it’s of heat. An oven mitt is used to
    13·2 answers
  • A Wooden block has a mass of 0.200kg, a specific heat of 710 J (kg times degrees Celsius and is at a temperature of 20.0 degrees
    7·1 answer
  • Enrico says that positive charge is created when you rub a glass rod with silk, and that negative charge is simply the absence o
    5·1 answer
  • A student is flying west on a school trip from Winnipeg to Calgary in a jet that has an air velocity of 792 km/h.The direction t
    5·1 answer
  • What is the momentum of a 533 kg blimp moving east at +75 m/s
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!