The crate only moves horizontally, so its net vertical force is 0. The only forces acting in the vertical direction are the crate's weight (pointing downward) and the normal force of the surface on the crate (pointing upward). By Newton's second law, we have
∑ <em>F</em> (vertical) = <em>n</em> - <em>mg</em> = 0 → <em>n</em> = <em>mg</em> = 1876 N
where <em>n</em> is the magnitude of the normal force.
In the horizontal direction, the crate is moving at a constant speed and thus with no acceleration, so it's completely in equilibrium and the net horizontal force is also 0. The only forces acting on it in this direction are the 747 N push (pointing in the direction of the crate's motion) and the kinetic friction opposing it (pointing in the opposite direction). By Newton's second law,
∑ <em>F</em> (horizontal) = 747 N - <em>f</em> = 0 → <em>f</em> = 747 N
The frictional force is proportional to the normal force by a factor of the coefficient of kinetic friction, <em>µ</em>, such that
<em>f</em> = <em>µn</em> → <em>µ</em> = <em>f</em> / <em>n</em> = (747 N) / (1876 N) ≈ 0.398188 ≈ 0.40
1km per 5 mins
PLEASE VERIFY WITH SOMEONE I MAY BE INCORRECT
The acceleration produced in a body is always in the direction of the resultant force acting on the body. Therefore, we may determine the horizontal acceleration using the horizontal force applied. To do this, we may apply the mathematical form of Newton's second law:
Force = mass * acceleration
acceleration = force / mass
Substituting the values,
a = 100 / 0.15
a = 666.7 m/s²
The acceleration of the hockey puck is 670 m/s²
Answer:
29.4 N/m
0.1
Explanation:
a) From the restoring Force we know that :
F_r = —k*x
the gravitational force :
F_g=mg
Where:
F_r is the restoring force .
F_g is the gravitational force
g is the acceleration of gravity
k is the constant force
xi , x2 are the displacement made by the two masses.
Givens:
<em>m1 = 1.29 kg</em>
<em>m2 = 0.3 kg </em>
<em>x1 = -0.75 m </em>
<em>x2 = -0.2 m </em>
<em>g = 9.8 m/s^2 </em>
Plugging known information to get :
F_r =F_g
-k*x1 + k*x2=m1*g-m2*g
k=29.4 N/m
b) To get the unloaded length 1:
l=x1-(F_1/k)
Givens:
m1 = 1.95kg , x1 = —0.75m
Plugging known infromation to get :
l= x1 — (F_1/k)
= 0.1