answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
murzikaleks [220]
1 year ago
14

The asteroid belt is a region between Mars and Jupiter that contains a multitude of large rocks and planetary fragments called a

steroids. Most asteroids are about 3 AU from the Sun. What is the best estimate of the orbital period of a typical asteroid?
Physics
1 answer:
olga2289 [7]1 year ago
7 0
The best estimate of the orbital period of a typical asteroid is 9.0 earth years. 
You might be interested in
A 0.3 mm long invertebrate larva moves through 20oC water at 1.0 mm/s. You are creating an enlarged physical model of this larva
AleksandrR [38]

Answer:

Explanation:

For the problem, we should have same reynolds number

ρvd/mu = constant

1000×1×10⁻³×0.3×10⁻³/1.002×10⁻³ = 1400×0.5×d/600

d = 25.66 cm

5 0
2 years ago
An airplane is delivering food to a small island. It flies 100 m above the ground at a speed of 150 m/s .
miss Akunina [59]

Answer:

The airplane should release the parcel 6.7*10^2 m before reaching the island

Explanation:

The height of the plane is y_0=100m, and its speed is v=150 m/s

When an object moves horizontally in free air (no friction), the equation for the y measured with respect to ground is

y=y_0 - \frac{gt^2}{2}    [1]

And the distance X is

x = V.t     [2]

Being t the time elapsed since the release of the parcel

If we isolate t from the equation [1] and replace it in equation [2] we get

X = V . \sqrt{\frac{2y_0}{g}}

Using the given values:

x = 150 m/s  \sqrt{\frac{2\times 100m}{9.8 m/sec^2}}

x = 6.7*10^2 m

4 0
2 years ago
A 75-g bullet is fired from a rifle having a barrel 0.540 m long. Choose the origin to be at the location where the bullet begin
Mashutka [201]

The given question is incomplete. The complete question is as follows.

A 75-g bullet is fired from a rifle having a barrel 0.540 m long. Choose the origin to be at the location where the bullet begins to move. Then the force (in newtons) exerted by the expanding gas on the bullet is 14,000 + 10,000x − 26,000x^{2}, where x is in meters. Determine the work done by the gas on the bullet as the bullet travels the length of the barrel.

Explanation:

We will calculate the work done as follows.

     W = \int_{0}^{0.54} F dx

         = \int_{0}^{0.54} (14,000 + 10,000x - 26,000x^{2}) dx

         = [14000x + 5000x^{2} - 8666.7x^{3}]^{0.54}_{0}

         = 7560 + 1458 - 1364.69

         = 7653.31 J

or,      = 7.65 kJ       (as 1 kJ = 1000 J)

Thus, we can conclude that the work done by the gas on the bullet as the bullet travels the length of the barrel is 7.65 kJ.

5 0
2 years ago
"The predictions of Einstein’s Theory of General Relativity were tested on a double pulsar system in January of 2004. His equati
Rasek [7]

Answer:

99.95%

Explanation:

A double pulsar system named PSR J0737-3039A/B  in Puppis constellation was discovered in the year 2003. Pulsars are second most densest object in the universe after black holes and they emit radio waves at regular intervals. This pair presented a great and natural setup to test the Theory of General Relativity presented by Einstein in 1915. In this theory Einstein had presented a set of equations on how the space-time fabric will be curved because of the very dense objects such as Neutron stars. It also predicted how the gravitational waves are created because of stars orbiting each other.

A team of astrophysicists led by Michael Kramer, conducted a study on how these gravitational waves will impact the time in which the radio waves emitted by pulsars will reach Earth. The result of the study proved the theory of General Relativity to be accurate up to 99.95%.

8 0
2 years ago
A biker travels at an average speed of 18 km/hr along a 0.30 km straight segment of a bike path. How much time (in hours) does t
lawyer [7]

Answer: 0.016 h

Explanation:

\text{Average speed} = \frac{\text {Total Distance}}{\text {total time taken}}

It is given that, biker has an average speed = 18 km/h

Total distance traveled = 0.30 km

Therefore, time taken by biker to travel this distance:

\Rightarrow \text{total time taken} = \frac{0.30 km}{18 km/h}=0.016 h

Thus, the biker takes 0.016 hours to travel the segment of 0.30 km at an average speed of 18 km/h.

7 0
2 years ago
Other questions:
  • If steam enters a turbine at 600K and is exhausted at 400K, calculate the efficiency of the engine.
    13·2 answers
  • Two friends of different masses are on the playground. They are playing on the seesaw and are able to balance it even though the
    11·1 answer
  • A carnot engine operates between two heat reservoirs at temperatures th and tc. an inventor proposes to increase the efficiency
    7·1 answer
  • The measure of one of the small angles of a right triangle is 45 less than twice the measure of the other small angle. Find the
    14·1 answer
  • Suppose a plot of inverse wavelength vs frequency has slope equal to 0.119, what is the speed of sound traveling in the tube to
    5·1 answer
  • As in the video, we apply a charge +Q to the half-shell that carries the electroscope. This time, we also apply a charge –Q to t
    10·2 answers
  • Explain how climbing a mountain is similar to hiking from the equator to one of the poles
    14·1 answer
  • What is the effect of the following change on the volume of 1 mol of an ideal gas? The initial pressure is 722 torr, the final p
    13·1 answer
  • A textbook of mass 2.09kg rests on a frictionless, horizontal surface. A cord attached to the book passes over a pulley whose di
    13·1 answer
  • In the system shown above, the pulley is a uniform disk with a mass of .75 kg and a radius of 6.5 cm. The coefficient of frictio
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!