answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NemiM [27]
2 years ago
14

A block with mass m = 0.450 kg is attached to one end of an ideal spring and moves on a horizontal frictionless surface. The oth

er end of the spring is attached to a wall. When the block is at x = +0.240 m, its acceleration is ax = -14.0 m/s2 and its velocity is vx = +4.00 m/s. What is the spring's force constant k?

Physics
2 answers:
svetoff [14.1K]2 years ago
8 0

Answer:

k = 26.25 N/m

Explanation:

given,

mass of the block= 0.450

distance of the block = + 0.240

acceleration = a_x = -14.0 m/s²

velocity = v_x = + 4 m/s

spring force constant (k) = ?

we know,

x = A cos (ωt - ∅).....(1)

v = - ω A cos (ωt - ∅)....(2)

a = ω²A cos (ωt - ∅).........(3)

\omega = \sqrt{\dfrac{k}{m}}

now from equation (3)

a_x = \dfrac{k}{m}x

k = \dfrac{m a_x}{x}

k = \dfrac{0.45 \times (-14)}{0.24}

k = 26.25 N/m

hence, spring force constant is equal to k = 26.25 N/m

otez555 [7]2 years ago
5 0

The spring's force constant is 26.25 N/m

\texttt{ }

<h3>Further explanation</h3>

<em>Hooke's Law states that the length of a spring is directly proportional to the force acting on the spring.</em>

\boxed {F = k \times \Delta x}

<em>F = Force ( N )</em>

<em>k = Spring Constant ( N/m )</em>

<em>Δx = Extension ( m )</em>

\texttt{ }

The formula for finding Young's Modulus is as follows:

\boxed {E = \frac{F / A}{\Delta x / x_o}}

<em>E = Young's Modulus ( N/m² )</em>

<em>F = Force ( N )</em>

<em>A = Cross-Sectional Area ( m² )</em>

<em>Δx = Extension ( m )</em>

<em>x = Initial Length ( m )</em>

Let us now tackle the problem !

\texttt{ }

<u>Given:</u>

mass of block = m = 0.450 kg

extension = x = +0.240 m

acceleration = a_x = -14.0 m/s²

velocity = v_x = +4.00 m/s

<u>Asked:</u>

spring's force constant = k = ?

<u>Solution:</u>

k = m \omega^2

k = m \frac{-a_x}{x}

k = 0.450 \times \frac{ - ( -14.0 ) }{0.240}

\boxed{k = 26.25 \texttt{ N/m}}

\texttt{ }

<h3>Learn more</h3>
  • Young's modulus : brainly.com/question/6864866
  • Young's modulus for aluminum : brainly.com/question/7282579
  • Young's modulus of wire : brainly.com/question/9755626

\texttt{ }

<h3>Answer details</h3>

Grade: College

Subject: Physics

Chapter: Elasticity

You might be interested in
Is a dimond a pure substance? yes or no
Evgen [1.6K]
Yes A diamond* is a pure substance
8 0
1 year ago
Read 2 more answers
Alex throws a 0.15-kg rubber ball down onto the floor. The ball’s speed just before impact is 6.5 m/s, and just after is 3.5 m/s
Jet001 [13]

Answer: Change in ball's momentum is 1.5 kg-m/s.

Explanation: It is given that,

Mass of the ball, m = 0.15 kg

Speed before the impact, u = 6.5 m/s

Speed after the impact, v = -3.5 m/s (as it will rebound)

We need to find the change in the magnitude of the ball's momentum. It is given by :

So, the change in the ball's momentum is 1.5 kg-m/s. Hence, this is the required solution.

Read more on Brainly.com - brainly.com/question/12946012#readmore

7 0
1 year ago
A 120-g block of copper is taken from a kiln and quickly placed into a beaker of negligible heat capacity containing 300 g of wa
gavmur [86]

Answer : The correct option is, (d) 535^oC

Explanation :

In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.

q_1=-q_2

m_1\times c_1\times (T_f-T_1)=-m_2\times c_2\times (T_f-T_2)

where,

c_1 = specific heat of copper = 0.10cal/g^oC

c_2 = specific heat of water = 1.00cal/g^oC

m_1 = mass of copper = 120 g

m_2 = mass of water = 300 g

T_f = final temperature of mixture = 35^oC

T_1 = initial temperature of copper = ?

T_2 = initial temperature of water = 15^oC  

Now put all the given values in the above formula, we get:

120g\times 0.10cal/g^oC\times (35-T_1)^oC=-300g\times 1.00cal/g^oC\times (35-15)^oC

T_1=535^oC

Therefore, the temperature of the kiln was, 535^oC

7 0
2 years ago
Read 2 more answers
To practice Problem-Solving Strategy 17.1 for wave interference problems. Two loudspeakers are placed side by side a distance d
Nimfa-mama [501]

Complete Question

The compete question is shown on the first uploaded question

Answer:

The speed is  v  =  350 \  m/s  

Explanation:

From the question we are told that

   The  distance of separation is  d =  4.00 m  

  The distance of the listener to the center between the speakers is  I =  5.00 m

  The change in the distance of the speaker is by k  =  60 cm  =  0.6 \  m

    The frequency of both speakers is f =  700 \  Hz

Generally the distance of the listener to the first speaker is mathematically represented as

       L_1  =  \sqrt{l^2 + [\frac{d}{2} ]^2}

       L_1  =  \sqrt{5^2 + [\frac{4}{2} ]^2}

        L_1  =   5.39 \  m

Generally the distance of the listener to second speaker at its new position is  

          L_2  =  \sqrt{l^2 + [\frac{d}{2} ]^2 + k}

       L_2  =  \sqrt{5^2 + [\frac{4}{2} ]^2 + 0.6}

        L_2  =   5.64  \  m  

Generally the path difference between the speakers is mathematically represented as

        pD  = L_2 - L_1  =  \frac{n  *  \lambda}{2}

Here \lambda is the wavelength which is mathematically represented as

         \lambda =  \frac{v}{f}

=>    L_2 - L_1  =  \frac{n  *  \frac{v}{f}}{2}

=>    L_2 - L_1  =  \frac{n  *  v}{2f}  

=>    L_2 - L_1  =  \frac{n  *  v}{2f}  

Here n is the order of the maxima with  value of  n =  1  this because we are considering two adjacent waves

=>    5.64 - 5.39   =  \frac{1  *  v}{2*700}      

=>    v  =  350 \  m/s  

7 0
2 years ago
An ambulance moving at 42 m/s sounds its siren whose frequency is 450 hz. a car is moving in the same direction as the ambulance
Korvikt [17]
(a) Since the ambulance and the car are moving one relative to each other, we have to use the general formula of the Doppler effect, which gives us the shift of the frequency of the siren as heard by an observer in the car:
f'=( \frac{v+v_o}{v+v_s} )f
where
f' is the apparent frequency as heard by the observer in the car
v is the velocity of the wave 
v_o is the velocity of the observer (positive if it is moving towards the source, negative if it is moving away)
v_s is the velocity of the source (positive if the source is moving away from the observer, negative if is is moving towards it)
f is the real frequency of the sound

In the first part of the problem:
v=343 m/s (speed of the sound wave)
v_o =-25 m/s (the car is moving away from the ambulance)
v_s = -42 m/s (the ambulance is moving towards the car)
f=450 Hz (original frequency of the sound)

If we plug the numbers into the formula, we find
f'=( \frac{343 m/s-25 m/s}{343 m/s-42 m/s} )(450 Hz)=475 Hz

b) This time, the ambulance passes the car, so the ambulance is now moving away from the car; this means that v_s must be positive:
v_s=+42 m/s
Moreover, the car is now moving towards the ambulance, so we should reverse also the sign of v_o:
v_o=+25 m/s
All the other data do not change, so if we use the same formula as before, we find
f'=( \frac{343 m/s+25 m/s}{343 m/s+42 m/s} )(450 Hz)=430 Hz
8 0
1 year ago
Other questions:
  • Two negative charges that are both -0.3C push each other apart with a force of 19.2 N. How far apart are the two charges?
    15·1 answer
  • Blue light, which has a wavelength of about 475 nm, is made to pass through a slit of a diffraction grating that has 425 lines p
    12·2 answers
  • The suns energy is classified by the
    15·2 answers
  • Karyotypes are done by matching up _____________________________ so that they are paired up. Question 11 options:
    13·2 answers
  • Ferdinand the frog is hopping from lily pad to lily pad in search of a good fly
    5·1 answer
  • In a fusion reaction, the nuclei of two atoms join to form a single atom of a different element. In such a reaction, a fraction
    5·1 answer
  • The platform is rotating about the vertical axis such that at any instant its angular position is u = (4t3/2) rad, where t is in
    8·1 answer
  • Quando aquecemos água em nossas casas, ao nível do mar, utilizando um recipiente aberto, sua temperatura nunca ultrapassa os 100
    9·1 answer
  • Which type of reaction does this diagram represent? A small ball heads toward a large circle labeled superscript 235 upper U. An
    15·2 answers
  • A toy doll and a toy robot are standing on a frictionless surface facing each other. The doll has a mass of 0.2 kg, and the robo
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!