Answer:
230
Explanation:
= Rotational speed = 3600 rad/s
I = Moment of inertia = 6 kgm²
m = Mass of flywheel = 1500 kg
v = Velocity = 15 m/s
The kinetic energy of flywheel is given by

Energy used in one acceleration

Number of accelerations would be given by

So the number of complete accelerations is 230
Answer: 
Explanation:

Where;
a = acceleration
V2 = final velocity
V1 = initial velocity
t = time
If John runs 1.0 m/s first, we assume this is V1. He accelerates to 1.6 m/s; this is V2.



The answer is True. The amount force exerted by any object is directly proportional to its mass. This means that our planet is exerting more gravitational force to Angelina, and Angelina is also exerting a gravitational force on our planet directly proportional to her mass. Angelina is actually falling towards the center of the earth,and also our planet is also moving towards Angelina, but it seems negligible with respect to Angelina.Our Sun is so massive that it held our planet in its orbit because of its gravitational force.
We want to know the amount of force that stretches the spring 0.22 m.
That force is the WEIGHT of the mass hung from it.
The weight of the mass is (mass) times (gravity).
To do that calculation, we need to know the value of gravity, but
gravity has different values on every planet. I shall assume that
this whole springy question is taking place on Earth, so that the
value of gravity is 9.8 m/s² .
The weight of the mass is (0.4 kg) x (9.8 m/s²) = 3.92 Newtons.
The spring constant is
(force/length of the stretch)
= (3.92 Newtons) / (0.22 meters)
= (3.92 / 0.22) Newtons/meter
= 17.82 N/m .
Answer:

Explanation:
First number is
Second number is 
We need to multiply the two numbers.

In scientific notation : 
Hence, this is the required solution.