answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kkurt [141]
2 years ago
8

4. A 505-turn circular-loop coil with a diameter of 15.5 cm is initially aligned so that

Physics
2 answers:
Basile [38]2 years ago
8 0

The strength of the magnetic field is 4.8\cdot 10^{-5} T

Explanation:

According to Faraday's Law, the magnitude of the induced emf in the coil is equal to the rate of changeof the flux linkage through the coil:

\epsilon = \frac{N\Delta \Phi}{\Delta t} (1)

where

N = 505 is the number of turns in the coil

\Delta \Phi is the change in magnetic flux through the coil

\Delta t = 2.77 ms = 2.77\cdot 10^{-3} s is the time interval

\epsilon = 0.166 V

The coil is rotated from a position perpendicular to the Earth's magnetic field to a position parallel to it, so the final flux is zero, and the magnitude of the flux change is simply equal to the initial flux:

\Delta \Phi = B A cos \theta

where

B is the strength of the magnetic field

A is the area of the coil

\theta=0^{\circ} is the angle between the normal to the coil and the field

The area of the coil can be written as

A=\pi r^2

where

r=\frac{15.5 cm}{2}=7.75 cm = 7.75\cdot 10^{-2} m is its radius

Substituting everything into eq.(1) and solving for B, we find:

\epsilon= \frac{NB\pi r^2 cos \theta}{\Delta t}\\B=\frac{\epsilon \Delta t}{\pi r^2 cos \theta}=\frac{(0.166)(2.77\cdot 10^{-3})}{(505)\pi (7.75\cdot 10^{-2})^2(cos 0^{\circ})}=4.8\cdot 10^{-5} T

Learn more about magnetic fields:

brainly.com/question/3874443

brainly.com/question/4240735

#LearnwithBrainly

Luba_88 [7]2 years ago
7 0

Answer:

The value of Earth's magnetic field is 4.825 x 10⁻⁵ T

Explanation:

Given;

Number of turns; N = 505-turn

Diameter of the circular-loop, d = 15.5 cm

Average emf, V = 0.166 V

change in time, t = 2.77 ms

V_{avg} =- N\frac{d \phi}{dt} -------equation (i)\\\\\phi = BACos \theta \\\\d \phi = BACos \theta_f - BACos \theta_i\\\\V_{avg.} = -N(\frac{BACos \theta_f - BACos \theta_i}{dt})\\\\V_{avg.} = N(\frac{BACos \theta_i - BACos \theta_f}{dt}) ---------equation(ii)

initially, when the plane of the circular loop is perpendicular to Earth's magnetic field, \theta _i = 0^o

Finally, when the coil was rotated 90.0°, \theta_f = 90^o

V_{avg.} = NBA(\frac{Cos 0 -Cos 90}{t} )\\\\V_{avg.} = \frac{NBA}{t} \\\\B = \frac{V_{avg.}*t}{NA} -------------equation(iii)\\\\But, A = \frac{\pi d^2}{4} \\\\B = \frac{4*V_{avg.}*t}{N*\pi d^2}\\\\substitute \ the \ given \ values\\\\B = \frac{4*(0.166)*(2.77*10^{-3})}{(505)*\pi* (0.155)^2} = 4.825*10^{-5} \ T

Thus, the value of Earth's magnetic field is 4.825 x 10⁻⁵ T

You might be interested in
A 5.0 kg cannonball is dropped from the top of a tower. It falls for 1.6 seconds before slamming into a sand pile at the base of
stepan [7]

Answer:

15.7 m/s

Explanation:

The motion of the cannonball is a accelerated motion with constant acceleration g = 9.8 m/s^2 towards the ground (gravitational acceleration). Therefore, the velocity of the ball at time t is given by:

v(t)=u + gt

where

u = 0 is the initial velocity

g = 9.8 m/s^2 is the acceleration

t is the time

If we substitute t=1.6 s into the equation, we find the final velocity of the cannonball:

v(1.6 s)=0+(9.8 m/s^2)(1.6 s)=15.7 m/s

4 0
2 years ago
An engineer wants to design a circular racetrack of radius R such that cars of mass m can go around the track at speed without t
gtnhenbr [62]

1. tan \theta = \frac{v^2}{Rg}

For the first part, we just need to write the equation of the forces along two perpendicular directions.

We have actually only two forces acting on the car, if we want it to go around the track without friction:

- The weight of the car, mg, downward

- The normal reaction of the track on the car, N, which is perpendicular to the track itself (see free-body diagram attached)

By resolving the normal reaction along the horizontal and vertical direction, we find the following equations:

N cos \theta = mg (1)

N sin \theta = m \frac{v^2}{R} (2)

where in the second equation, the term m\frac{v^2}{R} represents the centripetal force, with v being the speed of the car and R the radius of the track.

Dividing eq.(2) by eq.(1), we get the  following expression:

tan \theta = \frac{v^2}{Rg}

2. F=\frac{m}{R}(w^2-v^2)

In this second situation, the cars moves around the track at a speed

w>v

This means that the centripetal force term

m\frac{v^2}{R}

is now larger than before, and therefore, the horizontal component of the normal reaction, N sin \theta, is no longer enough to keep the car in circular motion.

This means, therefore, that an additional radial force F is required to keep the car round the track in circular motion, and therefore the equation becomes

N sin \theta + F = m\frac{w^2}{R}

And re-arranging for F,

F=m\frac{w^2}{R}-N sin \theta (3)

But from eq.(2) in the previous part we know that

N sin \theta = m \frac{v^2}{R}

So, susbtituting into eq.(3),

F=m\frac{w^2}{R}-m\frac{v^2}{R}=\frac{m}{R}(w^2-v^2)

4 0
2 years ago
if a toaster transfers 100 joules of energy every ten seconds, what is the power rating of the toaster include the units in your
Mila [183]

Answer:

that is the solution to the question

8 0
2 years ago
Read 2 more answers
A fan is to accelerate quiescent air to a velocity of 12.5 m/s at a rate of 9 m3/s. Determine the minimum power that must be sup
Reika [66]

Answer:

= 829.69 Watt

≅ 830 Watt

Explanation:

Given that,

Velocity of air flow = 12.5m/s

Rate of flow of air = 9m³/s

Density of air = 1.18kg/m³

power by kinetic energy = 1/2(mv²)

mass = density × volume

m = 1.18 × 9

  = 10.62 kg/s

power = 1/2 mV²

           = 1/2 (10.62 × 12.5²)

           = 829.69 Watt

           ≅ 830 Watt

Flow rate  

u

=

9

 

m

3

/

s

Velocity of the air  

V

=

8

 

m/s

Density of the air  

ρ

=

1.18

 

kg

/

m

3

5 0
2 years ago
Calculate the mass of the air contained in a room that measures 2.50 m x 5.50 m x 3.00 m if the density of air is 1.29 g/dm3.53.
Law Incorporation [45]

Answer:

5.32\cdot 10^4 g

Explanation:

First of all, we need to find the volume of the room, which is given by

V=2.50 m \cdot 5.50 m \cdot 3.00 m =41.3 m^3

Now we  can find the mass of the air by using

m=dV

where

d=1.29 g/dm^3 is the density of the air

V=41.3 m^3 = 41,300 dm^3 is the volume of the room

Substituting,

m=(1.29)(41300)=5.32\cdot 10^4 g

6 0
2 years ago
Other questions:
  • A glider moving with a speed of 200 kilometers/hour experiences a cross wind of 30 kilometers/hour. What is the resultant speed
    5·1 answer
  • If you wished to warm 100 kg of water by 15 degrees celsius for your bath, how much heat would be required? (give your answer in
    12·1 answer
  • A gannet is a seabird that fishes by diving from a great height
    12·1 answer
  • Which statement describes one way in which global winds affect weather and climate? A. Polar easterlies move warm air to the mid
    14·2 answers
  • Potential energy matter has a result of its ____ or ____.
    5·2 answers
  • A hydraulic lift raises a 2000 kg automobile when a 500 N force is applied to the smaller piston. If the smaller piston has an a
    8·1 answer
  • A nonuniform, but spherically symmetric, distribution of charge has a charge density ρ(r) given as follows:
    13·1 answer
  • In a laboratory test of tolerance for high acceleration, a pilot is swung in a circle 13.0 m in diameter. It is found that the p
    6·1 answer
  • A mirror forms an erect image 40cm from the object and one third its height where must the mirror be situated ​
    12·1 answer
  • PLEASE HELPPP 100 POINTS HURRY !!!!Which diagram best illustrates the magnetic field of a bar magnet? A bar magnet with a north
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!