answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Masteriza [31]
2 years ago
5

A farmer lifts his hay bales into the top loft of his barn by walking his horse forward with a constant velocity of 8 ft/s. Dete

rmine the velocity and acceleration of the hay bale when the horse is 10 ft away from the barn.
Physics
1 answer:
g100num [7]2 years ago
6 0

Answer:

Velocity = 8 ft/s

Acceleration = 0 m/s²

Explanation:

Since, the horse is moving with a constant velocity, whose magnitude is given as equal to 8 ft/s. Therefore, it will have the same velocity when it is 10 ft away from the barn. And the velocity of hay bale will be same as the velocity of horse, as the horse is carrying the bales. Therefore:

<u>Velocity = 8 ft/s</u>

Coming to the second part of the question, which relates to the acceleration of the hay bale, when horse is 10 ft away from the barn. The formula for acceleration is given as:

Acceleration = Change in Velocity/ Time

But, the velocity of the horse in constant, which means there is no change in velocity. Hence,

Change in Velocity = 0

Therefore,

Acceleration = 0/Time

<u>Acceleration 0 m/s²</u>

You might be interested in
In 2014, the Rosetta space probe reached the comet Churyumov Gerasimenko. Although the comet's core is actually far from spheric
Viktor [21]

To solve this problem we will apply the concepts related to gravity according to the Newtonian definitions. From finding this value we will use the linear motion kinematic equations to find the time. Our values are

Comet mass M = 1.0*10^{13} kg

Radius r = 1.6km = 1600 m

Rock was dropped from a height 'h' from surface = 1m

The relation for acceleration due to gravity of a body of mass 'm' with radius 'r' is

g = \frac{GM}{R^2}

Where G means gravitational universal constant and M the mass of the planet

g = \frac{(6.67408*10^{-11})(1*10^{13})}{1600^2}

g = 2.607*10^{-4} m/s^2

Now calculate the value of the time

h = \frac{1}{2} gt^2

t = \sqrt{\frac{2h}{g}}

t = \sqrt{\frac{2(1)}{2.607*10^{-4}}}

t = 87.58s

The time taken for the rock to reach the surface is t = 87.58s

8 0
2 years ago
A distance of 2.00 mm separates two objects of equal mass. If the gravitational force between them is 0.0104 N, find the mass of
aleksklad [387]

Given the distance r = 2/1000 m, the force between them F = 0.0104 N, the mass of the two object can be calculated using formula:

F = G(m1m2)/r^2 since the mass are equal F = G (m^2)/r^2

And where G = is the gravitational constant (6.67E-11 m3 s-2 kg-1)

The mass of the two objects are 24.96 kg

6 0
2 years ago
Suppose two astronauts on a spacewalk are floating motionless in space, 3.0 m apart. Astronaut B tosses a 15.0 kg IMAX camera to
marta [7]

Answer:

\frac{ 112.5}{15+m_{A}}=v_{f}

(we need the mass of the astronaut A)

Explanation:

We can solve this by using the conservation law of the linear momentum P. First we need to represent every mass as a particle. Also we can simplify this system of particles by considering only the astronaut A with an initial speed v_{iA} of 0 m/s and a mass m_{A} and the IMAX camera with an initial speed v_{ic} of 7.5 m/s and a mass m_{c} of 15.0 kg.

The law of conservation says that the linear momentum P (the sum of the products between all masses and its speeds) is constant in time. The equation for this is:

P_{i}=p_{ic}+p_{iA}\\P_{i}=m_{c}v_{ic}+m_{A} v_{iA}\\P_{i}=15*7.5 + m_{A}*0\\P_{i}=112.5 \frac{kg.m}{s}

By the law of conservation we know that P_{i} =P_{f}

For P_{f} (final linear momentum) we need to treat the collision as a plastic one (the two particles stick together after the encounter).

So:

P_{i} =P_{f}=112.5\\

112.5=(m_{c}+m_{A})v_{f}\\\frac{ 112.5}{m_{c}+m_{A}}=v_{f}\\\frac{ 112.5}{15+m_{A}}=v_{f}

3 0
2 years ago
The primary additive colors are red, green, and blue, which means that any color can be constructed from a linear superposition
3241004551 [841]
The primary additive colors are red, green, and blue, which means that any color can be constructed from a linear superposition of these colors. According to this RGB (Red, Green, Blue) refers to the system for representing colors on a computer display.  It is not possible <span>that someone could have a color photograph that cannot be represented using full 24-bit color. Every color photograph can be represented using the RGB.</span>
3 0
2 years ago
Two cars start 200 m apart and drive toward each other at a steady 10 m/s. On the front of one of them, an energetic grasshopper
vladimir1956 [14]

Answer:

Total distance does the grasshopper travel before the cars hit is 150 m

Explanation:

Each car moves x=100 m before they collide. Both the cars moving in constant velocity. time taken t by each car is

t=\frac{x}{v}

where x  is the distance traveled with velocity v

t=\frac{100}{10}\\t=10 sec

The insect is moving through this time period with a constant velocity of 15 m/s

The distance traveled by grasshopper  is

distance=V_{gh} \times t\\distance=15 \times 10\\distance=150 m

7 0
2 years ago
Other questions:
  • A shell is fired from the ground with an initial speed of 1.70x10^3 m/s at an initial angle of 55.0° to the horizontal, Neglectin
    10·1 answer
  • Which statements accurately describe conduction and convection? Check all that apply.
    13·2 answers
  • 2. An airplane traveling north at 220. meters per second encounters a 50.0-meters-per-second crosswind
    13·1 answer
  • A nerve signal is transmitted through a neuron when an excess of Na+ ions suddenly enters the axon, a long cylindrical part of t
    10·1 answer
  • A diffusion couple composed of two silver– gold alloys is formed; these alloys have compositions of 98 wt% Ag–2 wt% Au and 95 wt
    10·1 answer
  • A 1.2-m radius cylindrical region contains a uniform electric field along the cylinder axis. It is increasing uniformly with tim
    11·1 answer
  • Consider a horizontal layer of the dam wall of thickness dx located a distance x above the reservoir floor. What is the magnitud
    10·1 answer
  • What is the direction of the magnetic field b⃗ net at point a? Recall that the currents in the two wires have equal magnitudes.
    5·1 answer
  • Two equal length of wire made of the same material but of different diameters have an effective resistance of 0.8 ohm when they
    9·1 answer
  • An empty glass beaker has a mass of 103 g. When filled with water, it has a total mass of 361g.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!