Answer:
3.964 s
Explanation:
Metric unit conversion:
1 miles = 1.6 km = 1600 m.
1 hour = 60 minutes = 3600 seconds
75 mph = 75 * 1600 / 3600 = 33.3 m/s
22.5 mph = 22.5 * 1600/3600 = 10 m/s
Let g = 9.81 m/s2
Friction is the product of coefficient and normal force, which equals to the gravity

The deceleration caused by friction is friction divided by mass according to Newton 2nd law.

So the time required to decelerate from 33.3 m/s to 10 m/s so the wheels don't slide, with the rate of 5.886 m/s2 is

Answer:
a). same as
b). less than
Explanation:
a). When a bicycle is moving, the linear speed at the top of the rear wheel is same as the linear speed at the top of the front wheel. Since the clown's bicycle is a rigid body, both the wheels that is the front wheel and the rear wheel will move with the same linear speed.
b). Since we know that angular speed varies inversely to the radius of the wheel.
That is ω = 1 / r
Since the rear wheel has twice the radius of that of the front wheel, therefore real wheel will have less angular speed than the front wheel.
Therefore, the angular speed of the rear wheel is less than the angular speed of the front wheel.
Charges build up when you have dry air and friction ,the heat to clothes which dry it out and causes friction.
How about a carousel (merry go round).
For any one horse or rider, Speed is constant but direction keeps changing, so velocity does too.
Fnet=(115+106)-186= 34 N
mass=Force/g= 186N/9.8m/s^2 = 18.98 kg
a=fnet/mass => 34N/18.98kg = 1.79 m/s^2
so A= 1.8m/s^2