The unit for work J can also be written as Nm. Therefore, it is a derived unit as different SI units are needed to obtain its value. In this case, its derived from force and distance.
Answer:
292796435 seconds ≈ 300 million seconds
Explanation:
First of all, the speed of the car is 121km/h = 33.6111 m/s
The radius of the planet is given to be 7380 km = 7380000 m
From the relationship between linear velocity and angular velocity i.e., v=rw, the angular velocity of the car will be w=v/r = 33.6111/7380000 = 0.000000455 rad/s = 4.55 x 10⁻⁶ rad/sec
If the angular velocity of the vehicle about the planet's center is 9.78 times as large as the angular velocity of the planet then we have
w(vehicle) = 9.78 x w(planet)
w(planet) = w(vehicle)/9.78 = 4.55 x 10⁻⁶ / 9.78 = 4.66 x 10⁻⁷ rad/sec
To find the period of the planet's rotation; we use the equation
w(planet) = 2π÷T
Where w(planet) is the angular velocity of the planet and T is the period
From the equation T = 2π÷w = 2×(22/7) ÷ 4.66 x 10⁻⁷ = 292796435 seconds
Therefore the period of the planet's motion is 292796435 seconds which is approximately 300, 000, 000 (300 million) seconds
Answer : Zamir's displacement and Talia's displacement is equal.
Explanation :
Displacement is explained to be the changing position of an object.
Zamir covers total distance 27 m and Talia covers total distance 19 m but Zamir's initial and final position and Talia's initial and final position is same.
So, we can say that Zamir's displacement and Talia's displacement is equal.
6
Explanation:
The mechanical advantage is a factor that measures how input force increases using a machine.
A lever is a simple machine with the fulcrum at the center.
To calculate the mechanical advantage M.A of levers we use the expression below;
M. A =
= 
= input force
= output force
a is the distance of the input force from the fulcrum
b is the distance of the output force from the fulcrum
Given
a = 36cm
b = 6cm
M.A =
= 6
learn more:
Torque brainly.com/question/5352966
#learnwithBrainly