In order to answer this exercise you need to use the formulas
S = Vo*t + (1/2)*a*t^2
Vf = Vo + at
The data will be given as
Vf = final velocity = ?
Vo = initial velocity = 1.4 m/s
a = acceleration = 0.20 m/s^2
s = displacement = 100m
And now you do the following:
100 = 1.4t + (1/2)*0.2*t^2
t = 25.388s
and
Vf = 1.4 + 0.2(25.388)
Vf = 6.5 m/s
So the answer you are looking for is 6.5 m/s
Answer:
60words/minute
Explanation:
If Sunitha can type 1800 words in half an hour, this can be expressed as;
1800 words = 30 minutes
To get her typing speed per minute, we will use the formula
Speed = Number of words/Time used
Typing speed = 1800/30
Typing speed = 60words/minute
Hence her typing speed in words per minute is 60words/minute
Answer: Seismograph is an instrument that is used to measure the vibration of the earthquake. It is based on seismic waves. X ray is an electromagnetic energy wave that is used for CAT ( computerized axial tomography) scan.
Hence, both seismic wave and X ray are energy waves.
The velocity of seismic waves is different in different media. Similarly, X ray loses its amplitude depending upon the dense layer of the tissue.
Answer:
a) V = 1.866 10² V
, b) V = 3.424 10⁵ V
, c) v = 8.1 10⁶ m / s
Explanation:
a) the potential difference is requested to accelerate the electrons up to 2.7% of the speed of light
v = 0.027 c
v = 0.027 3 10⁸
v = 8.1 10⁶ m / s
for this part we can use the conservation of mechanical energy
starting point. When electrons are at rest
Em₀ = U = q V
final point. Electrons with maximum speed
Em_f = K = ½ m v2
Em₀ = Em_{f}
e V = ½ m v²
V = ½ m v² / e
let's calculate
V = ½ 9.1 10⁻³¹ (8.1 10⁶)² / 1.6 10⁻¹⁹
V = 1.866 10² V
V = 1866 V
b) if this acceleration protons is the mass of the proton is m_{p} = 1.67 10-27
V = ½ 1.67 10⁻²⁷ (8.1 10⁶)² / 1.6 10⁻¹⁹
V = 3.424 10⁵ V
V = 342402 V
c)
this potential difference should give the protons the same speed as the electrons
v = 8.1 10⁶ m / s
Answer:
D) 42.87 m/s
Explanation:
First, find the time it takes him to land. Given in the y direction:
Δy = 60 m
v₀ = 0 m/s
a = 9.8 m/s²
Find: t
Δy = v₀ t + ½ at²
60 m = (0 m/s) t + ½ (9.8 m/s²) t²
t = 3.5 s
Next, find the speed needed to travel the horizontal distance in that time. Given in the x direction:
Δx = 60 m
a = 0 m/s²
t = 3.5 s
Find: v₀
Δy = v₀ t + ½ at²
150 m = v₀ (3.5 s) + ½ (0 m/s²) (3.5 s)²
v₀ = 42.87 m/s