(a) 3.56 m/s
(b) 11 - 3.72a
(c) t = 5.9 s
(d) -11 m/s
For most of these problems, you're being asked the velocity of the rock as a function of t, while you've been given the position as a function of t. So first calculate the first derivative of the position function using the power rule.
y = 11t - 1.86t^2
y' = 11 - 3.72t
Now that you have the first derivative, it will give you the velocity as a function of t.
(a) Velocity after 2 seconds.
y' = 11 - 3.72t
y' = 11 - 3.72*2 = 11 - 7.44 = 3.56
So the velocity is 3.56 m/s
(b) Velocity after a seconds.
y' = 11 - 3.72t
y' = 11 - 3.72a
So the answer is 11 - 3.72a
(c) Use the quadratic formula to find the zeros for the position function y = 11t-1.86t^2. Roots are t = 0 and t = 5.913978495. The t = 0 is for the moment the rock was thrown, so the answer is t = 5.9 seconds.
(d) Plug in the value of t calculated for (c) into the velocity function, so:
y' = 11 - 3.72a
y' = 11 - 3.72*5.913978495
y' = 11 - 22
y' = -11
So the velocity is -11 m/s which makes sense since the total energy of the rock will remain constant, so it's coming down at the same speed as it was going up.

P=25x10^6 andF=750.So plug in everything to solve for A. which is 3x10^-5m^2 OR 0.3mm^2
Answer:

Explanation:
We can use the following SUVAT equation to solve the problem:

where
v = 0 is the final velocity of the car
u = 24 m/s is the initial velocity
a is the acceleration
d = 196 m is the displacement of the car before coming to a stop
Solving the equation for a, we find the acceleration:

Answer:
Part a)
f = 1911.5 Hz
Part b)

Explanation:
Here the source and observer both are moving towards each other
so we know that the apparent frequency is given as

here we know that



now we will have


Part b)
Apparent wavelength is given by the formula

here we will have

