W = 1/2k*x^2.
k = spring constant = 2500 n/m.
x = distance = 4 cm = 0.04m (convert to same units).
W = 1/2(2500)(0.04)^2 = 2J.
Answer:
KE= 1/2mv²
Explanation:
The kinetic energy of a body is the energy possessed by virtue of the body in motion
Given the parameters
m which is the mass of the body
v which is the velocity of the body too
K.E = kinetic energy
The expression for the kinetic energy of a body is given as
KE= 1/2mv²
Answer:
60.8 cm²
Explanation:
The charge density, σ on the surface is σ = Q/A where q = charge = 87.6 pC = 87.6 × 10⁻¹² C and A = area = 65.2 cm² = 65.2 × 10⁻⁴ m².
σ = Q/A = 87.6 × 10⁻¹² C/65.2 × 10⁻⁴ m² = 1.34 × 10⁻⁸ C/m²
Now, the charge through the Gaussian surface is q = σA' where A' is the charge in the Gaussian surface.
Since the flux, Ф = 9.20 Nm²/C and Ф = q/ε₀ for a closed Gaussian surface
So, q = ε₀Ф = σA'
ε₀Ф = σA'
making A' the area of the Gaussian surface the subject of the formula, we have
A' = ε₀Ф/σ
A' = 8.854 × 10⁻¹² F/m × 9.20 Nm²/C ÷ 1.34 × 10⁻⁸ C/m²
A' = 81.4568/1.34 × 10⁻⁴ m²
A' = 60.79 × 10⁻⁴ m²
A' ≅ 60.8 cm²
A = h / n => h = a*n
a = 0.290 hit / time
n = 300 times
=> h = 0.290 hit / time * 300 time = 87 hits
Answer: 87 hits
Answer:
Explained
Explanation:
Two pieces of the same metal can have different recrystallization temperatures if the pieces have been cold worked to different amounts. The piece of work cold worked to greater extend will have more internal energy to drive the recrystalline process and lower recrystallization temperature.
Yes, its possible that recrystallization to take place in some regions of a part before it does in other regions of the same part if the work has been unevenly strained or if the part have different thickness at different sections.