Answer:
A) 12.08 m/s
B) 19.39 m/s
Explanation:
A) Down the hill, we will apply Newton’s second law of motion in the downward direction to get:
mg(sinθ) – F_k = ma
Where; F_k is frictional force due to kinetic friction given by the formula;
F_k = (μ_k) × F_n
F_n is normal force given by mgcosθ
Thus;
F_k = μ_k(mg cosθ)
We now have;
mg(sinθ) – μ_k(mg cosθ) = ma
Dividing through by m to get;
g(sinθ) – μ_k(g cosθ) = a
a = 9.8(sin 12.03) - 0.6(9.8 × cos 12.03)
a = -3.71 m/s²
We are told that distance d = 24.0 m and v_o = 18 m/s
Using newton's 3rd equation of motion, we have;
v = √(v_o² + 2ad)
v = √(18² + (2 × -3.71 × 24))
v = 12.08 m/s
B) Now, μ_k = 0.10
Thus;
a = 9.8(sin 12.03) - 0.1(9.8 × cos 12.03)
a = 1.08 m/s²
Using newton's 3rd equation of motion, we have;
v = √(v_o + 2ad)
v = √(18² + (2 × 1.08 × 24))
v = 19.39 m/s
The change in electric potential energy of the ion is equal to the charge multiplied by the voltage difference:

where the charge q of the na+ ion is equal to one positive charge, so it's equal to the proton charge:

, and Vf and Vi are the final and initial voltages.
Substituting the numbers, we find:
Answer: 9130 joules
Explanation:
Workdone by wheelbarrow = ?
Time = 11 seconds
Power = 830 watts
Recall that power is the rate of doing work. Thus, power is workdone divided by time taken.
i.e Power = (workdone/time)
830 watts = Workdone / 11 seconds
Workdone = 830 watts x 11 seconds
Workdone = 9130 joules
Thus, 9130 joules of work is required to get the wheelbarrow across the yard.
Answer:
Part a)

Part b)

Explanation:
Part a)
change in the energy due to decay of photon is given as

here we know that

now we have



Part b)
While electron return to its ground state it will emit a photon of energy 2/3rd of the total energy
so we have


now to find the wavelength we have



Answer:
60.8 cm²
Explanation:
The charge density, σ on the surface is σ = Q/A where q = charge = 87.6 pC = 87.6 × 10⁻¹² C and A = area = 65.2 cm² = 65.2 × 10⁻⁴ m².
σ = Q/A = 87.6 × 10⁻¹² C/65.2 × 10⁻⁴ m² = 1.34 × 10⁻⁸ C/m²
Now, the charge through the Gaussian surface is q = σA' where A' is the charge in the Gaussian surface.
Since the flux, Ф = 9.20 Nm²/C and Ф = q/ε₀ for a closed Gaussian surface
So, q = ε₀Ф = σA'
ε₀Ф = σA'
making A' the area of the Gaussian surface the subject of the formula, we have
A' = ε₀Ф/σ
A' = 8.854 × 10⁻¹² F/m × 9.20 Nm²/C ÷ 1.34 × 10⁻⁸ C/m²
A' = 81.4568/1.34 × 10⁻⁴ m²
A' = 60.79 × 10⁻⁴ m²
A' ≅ 60.8 cm²