Explanation:
- A substance will floats if it is having lower density than the density of the liquid in which it is placed.
- A substance will sink if it is having density greater than the density of the liquid in which it is kept.
Density of corn syrup = 
1) Density of gasoline = 
Density of the gasoline is less than the the density of corn syrup which means it will float in corn syrup.
2) Density of water = 
Density of the water is less than the the density of corn syrup which means it will float in corn syrup.
3) Density of honey = 
Density of the gasoline is more than the the density of corn syrup which means it will sink in corn syrup.
4) Density of titanium = 
Density of the titanium is more than the the density of corn syrup which means it will sink in corn syrup.
Answer:
Magnification, m = 3
Explanation:
It is given that,
Focal length of the lens, f = 15 cm
Object distance, u = -10 cm
Lens formula :

v is image distance

Magnification,

So, the magnification of the lens is 3.
Answer:
This is because below 4°c, water unlike other materials becomes less dense when it's temperature is further lowered.
Explanation:
Due to the unusual nature of water; at about 4°c, the behavior of the density of water in relation to its temperature reverses. This means that water becomes less dense as it becomes colder below 4°c. The colder parts therefore floats to the top of the water body while the warmer part sinks allowing the top to freeze and the remaining body below to remain in its liquid state.
The freezing of the top of the lake alone protects the remaining depth of water from freezing by acting as an insulator and preventing further heat loss from the water to the ambient space. If this had not been the case, and water froze all through, marine lives will freeze to death and it will be more difficult to melt the ice come the next summer.
This behavior is due to the hydrogen bonding of the water molecules.
Answer:
22.7 meters
Explanation:
Let's remind the difference between distance and displacement:
- distance: the total distance travelled by an object in all its paths
- displacement: the different between the final and initial position of the object
In this case, the problem asks to find the distance covered by the ball. This will be the sum of the distances covered by the ball in each part of its motion, therefore:

(instead, the displacement will be the difference between the final and initial position of the ball, therefore:
)
Answer:
A. 261.6 hz.
B. 0.656 m.
Explanation:
A.
When yhe tube is open at one end and closed at the other,
F1 = V/4*L
Where,
F1 = fundamental frequency
V = velocity
L = length of the tube
When the tube is open at both ends,
F'1 = V/2*L
Where
F'1 = the new fundamental frequency
Therefore,
V/2*L x V/4*L
F'1 = 2 * F1
= 2 * 130.8
= 261.6 hz.
B.
F1 = V/4*L
Or
F'1 = V/2*L
Given:
V = 343 m/s
F1 = 130.8
L = 343/(4 * 130.8)
= 0.656 m.