Decomposing the vector b on the x-axis and the y-axis, we get a rectangle triangle where the two sides are bx (x-axis) and by (y-axis), and b is the hypothenuse.
The component in x, bx, is equal to the product between the hypothenuse and the cosine of the angle between b and the x-axis, which is

:
Solution: The correct order is: C, A, B
The statement of the problem:
How can we prove Earth is round and calculate its circumference?
Hypotheis:
If the sun casts shadows at different angles at the same time of day in different places, we can determine how much Earth curves.
If the Earth was flat, the angle measured at different places at the same time of the day would be same.
Observation:
In Syene, the sun's rays are vertical at noon. At the same time in Alexandria, the rays are 7.2 degrees from the vertical.
12000 m/s = 12 km/s. Now to go 380000 km, it will take some time. How much time is given in the formula 12km/s. You go 12 kilometers every second. So you take

and that gives you 31,666.666 seconds.
Answer and Explanation:
curents i = 2.9 A
i ' = 4.4 A
the magnitude (in T.m) of the path integral of B.dl around the window frame = μo * current enclosed
= μo* ( i '- i )
Since from Ampere's law
where μ o = permeability of free space = 4π * 10 ^-7 H / m
plug the values we get the magnitude (in T.m) of the path integral of B.dl = ( 4π*10^-7 ) (2.9+4.4)
= 1.884 * 10^-6 Tm
You will have to use this formula:

Final Velocity (V) = 4m/s
Initial Velocity (Vo) = 8m/s
Acceleration (a) = ? m/s^2
Time (t) = 2 secs
Then:
-> 4 = 8 + a x 2
-> 4 - 8 = 2a
-> -4 = 2a
-> a = -4/2
-> a = -2 m/s^2
Ps: It's value is negative because the she was in retrograde motion.
Answer: Her acceleration is -2 m/s^2.