Answer:
Explanation:
Given

Em wave is in the form of

where 


Wave constant for EM wave k is

Wavelength of wave 


Answer:
the correct answer is c v₁> 12.5 m / s
Explanation:
This is a one-dimensional kinematics exercise, let's start by finding the link to get up to speed.
v² = v₀² + 2 a₁ x
as part of rest v₀ = 0
a₁ = v² / 2x
a₁ = 25² / (2 120)
a₁ = 2.6 m / s²
now we can find the velocity for the distance x₂ = 60 m
v₁² = 0 + 2 a1 x₂
v₁ = Ra (2 2,6 60)
v₁ = 17.7 m / s
these the speed at 60 m
we see that the correct answer is c v₁> 12.5 m / s
Explanation:
hopefully that makes sense. the position doesn't change over the 5 seconds, meaning it's stopped but time still continues. then when the slope is negative this shows the bear's position becoming negative (backing up, changing direction).
Answer:
E = 1.25×10¹³ N/m²
Explanation:
Young's modulus is defined as:
E = stress / strain
E = (F / A) / (dL / L)
E = (F L) / (A dL)
Given:
F = 10 kg × 9.8 m/s² = 98 N
L = 1 m
dL = 10⁻⁵ m
A = π/4 (0.001 m)² = 7.85×10⁻⁷ m²
Solve:
E = (98 N × 1 m) / (7.85×10⁻⁷ m² × 10⁻⁵ m)
E = 1.25×10¹³ N/m²
Round as needed.
B. The object stops from a velocity of 12.0 m/s