answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alex41 [277]
2 years ago
14

Find the impulse of a 50. kg object under the following scenarios:

Physics
1 answer:
Alisiya [41]2 years ago
7 0
B. The object stops from a velocity of 12.0 m/s
You might be interested in
100-ft-long horizontal pipeline transporting benzene develops a leak 43 ft from the high-pressure end. The diameter of the leak
Amanda [17]

Answer:

Explanation:

The mass flow rate of benzene from the leak in the pipeline containing benzene is:

Q_m=AC_o\sqrt{2\rho g_cP_g}

Here, Q_m is the mass flow rate through the leak of the pipeline. A is the area of the hole, C_o is the discharge rate, \rho is the fluid density, g_c is the gravitational constant and P_g is the constant gauge pressure within the process unit.

The diametre of the leak (d) is 0.1 in. Convert from in to ft.

d=(0.1 in)(\frac{1ft}{12in})\\=8.33\times 10^{-3}ft

Calculate the area (A) of the hole. The area of the hole is.

A=\frac{\pi d^2}{4}

Substitute 3.14 for \pi and 8.33\times 10^{-3}ft for d and calculate A.

A=\frac{\pi d^2}{4}\\\\\frac{(3.14)(8.33\times 10^{-3})^2}{4}\\\\5.45\times 10^{-5}ft^2

The specific gravity of benzene is 0.8794. Specific gravity is the ratio of th density of a substance to the density of a reference substance.

Specific gravity of benzene = density of benzenee/denity of reference substance

Rewrite the expression in terms of density of benzene.

Density of benzene = specific gravity of benzene x density of reference substance

Take the reference substance as water. Density of water is 62.4\frac{Ib_m}{ft^3}. Calculate density of benzene.

Density of benzene = specific gravity of benzene x density of reference substance

=(0.8794)(62.4\frac{Ib_m}{ft^3})\\\\54.9\frac{Ib_m}{ft^3}

Calculate the pressure at the point of leak. The pressure is the average of the pressure of the high and low pressure end. Write the expression to calculate the average pressure.

Upstream x distance from upstream pressure end

P_g=+DOWNSTREAM PRESSURE X DISTANCE FROM THE DOWNSTREAM PRESSURE END/ TOTAL LENGTH OF THE HORIZONTAL PIPELINE

Calculate the distance from the downstream pressure end. The distance from upstream pressure end is 43 ft. Total of the pipe is 100 ft.

Distance from the downstream pressure end = Total length of the pipe - Distance from the upstream pressure end

The distance from upstream pressure end is 43 ft. Total length of the pipe is 100 ft. Substitute the values in the equation.

Distance from the downstream pressure end = Total length of the pipe - Distance from the upstream pressure end

= 100ft - 43ft = 57 ft

Substitute 50 psig for upstream, 43 ft fr distance from the upstream pressure end, 40 psig for downstream pressure, 57 ft for distance from the downstream pressure end, and 100 ft for the total length of the horizontal pipeline and calculate P_g.

Upstream x distance from upstream pressure end

P_g=+DOWNSTREAM PRESSURE X DISTANCE FROM THE DOWNSTREAM PRESSURE END/ TOTAL LENGTH OF THE HORIZONTAL PIPELINE

=\frac{(50psig\times 43ft)+(40psig \times 57ft)}{100ft}\\\\=44.3psig

Convert the pressure from psig to Ib_f/ft^2

P_g=(44.3psig)(\frac{1\frac{Ib_f}{ft^2}}{1psig})(144\frac{in^2}{ft^2})\\\\=6,379.2\frac{Ib_f}{ft^2}

The leak is like a sharp orifice. Take the value of the discharge coefficient as 0.61.

Substitute 5.45\times 10^{-5}ft^2 for A. 0.61 for C_o, 54.9\frac{Ib_m}{ft^3} for \rho, 32.17\frac{ft.Ib_m}{Ib_f.s^2} for g_c, and 6,379.2\frac{Ib_f}{ft^2} for P_g and calculate Q_m

Q_m=AC_o\sqrt{2\rho g_cP_g}\\\\=(5.45\times 10^{-5}ft^2)(0.61)\sqrt{2(54.9\frac{Ib_m}{ft^3})(32.17\frac{ft.Ib_m}{Ib_f.s^2})(6,379.2\frac{Ib_f}{ft^2})}\\\\(3.3245\times 10^{-5}ft^2)\sqrt{22,533,031.21\frac{Ib^2_m}{ft^4.s^2}}\\\\=0.158\frac{Ib_m}{s}

The mass flow rate of benzene through the leak in the pipeline is 0.158\frac{Ib_m}{s}

8 0
3 years ago
In very cold weather, a significant mechanism for heat loss by the human body is energy expended in warming the air taken into t
Pie

Answer:

A) Q_a=74256\ J

B) Q=93562560\ J

Explanation:

Given:

  • temperature of air, T_a=-19+273=254\ K
  • temperature of lungs, T_l=37+273=310\ K
  • specific Heat exchanged from the lungs , c_l=0.47\ J.kg^{-1}.K^{-1}
  • specific heat of air, c_a=1020\ J.kg^{-1}.K^{-1}
  • mass of 1 L air, m'=1.3\ kg
  • breath rate, b=21\ breath.min^{-1}

A)

Now,

amount of heat needed to warm the air of lungs to the body temperature:

Q_a=m'.c_a.\Delta T

Q_a=1.3\times1020\times (310-254)

Q_a=74256\ J

B)

Amount of heat lost per hour:

<u>No. of breaths per hour:</u>

B=b.60

B=21\times 60

B=1260

<u>Now the total loss of energy in 1 hr.:</u>

Q=Q_a.B

Q=74256\times 1260

Q=93562560\ J

7 0
2 years ago
In what state must matter exist for fusion reactions to take place
steposvetlana [31]

Answer:

Plasma

Explanation:

For a fusion reaction to take place, there must be conditions in which the particles have extreme thermal kinetic energies, in this way the collisions that cause the nuclear fusion are generated. Therefore, it is necessary to reach very high temperatures, in which the state of matter will necessarily be plasma.

8 0
2 years ago
A heat engine accepts 200,000 Btu of heat from a source at 1500 R and rejects 100,000 Btu of heat to a sink at 600 R. Calculate
diamong [38]

To solve the problem it is necessary to apply the concepts related to the conservation of energy through the heat transferred and the work done, as well as through the calculation of entropy due to heat and temperatra.

By definition we know that the change in entropy is given by

\Delta S = \frac{Q}{T}

Where,

Q = Heat transfer

T = Temperature

On the other hand we know that by conserving energy the work done in a system is equal to the change in heat transferred, that is

W = Q_{source}-Q_{sink}

According to the data given we have to,

Q_{source} = 200000Btu

T_{source} = 1500R

Q_{sink} = 100000Btu

T_{sink} = 600R

PART A) The total change in entropy, would be given by the changes that exist in the source and sink, that is

\Delta S_{sink} = \frac{Q_{sink}}{T_{sink}}

\Delta S_{sink} = \frac{100000}{600}

\Delta S_{sink} = 166.67Btu/R

On the other hand,

\Delta S_{source} = \frac{Q_{source}}{T_{source}}

\Delta S_{source} = \frac{-200000}{1500}

\Delta S_{source} = -133.33Btu/R

The total change of entropy would be,

S = \Delta S_{source}+\Delta S_{sink}

S = -133.33+166.67

S = 33.34Btu/R

Since S\neq   0 the heat engine is not reversible.

PART B)

Work done by heat engine is given by

W=Q_{source}-Q_{sink}

W = 200000-100000

W = 100000 Btu

Therefore the work in the system is 100000Btu

4 0
2 years ago
A 6.70 −μC particle moves through a region of space where an electric field of magnitude 1500 N/C points in the positive x direc
Alborosie

The given question is incomplete. The complete question is as follows.

A 6.70 −μC particle moves through a region of space where an electric field of magnitude 1500 N/C points in the positive x direction, and a magnetic field of magnitude 1.25 T points in the positive z direction.

A) If the net force acting on the particle is 6.21 \times 10^{-3} N in the positive x direction, find the components of the particle's velocity. Assume the particle's velocity is in the x-y plane.

Enter your answers numerically separated by commas.

Explanation:

The given data is as follows.

           Q = 6.50 \times 10^{-6} C

           E = 1300 N/C in the +x direction

           B = 1.02 T in the +z direction

and,    F_{net} = 6.25 \times 10^{-3} N in the +x direction

Also,       F_{net} = F_{E} - F_{b}

                         = qE - qvB

Now, we will calculate the value of v as follows.

             v = (\frac{1}{B}) \times (E - \frac{F_{net}}{q})

                 = (\frac{1}{1.02 T}) \times (1300 - \frac{6.25 \times 10^{-3}}{6.50 \times 10^{-6}})

                v = 458.507 m/s

Using the value for velocity, we need to know which direction it's going.

You know +x direction for E, +z direction for B and +x for F_{net}.

Using the right hand rule where:

your right thumb goes toward the F_{net}, then your index finger points to B (z direction) Then curl your middle, ring, and pink 90 angle. This shows where v is going which is -y direction.

Thus, we can conclude that v_{x}, v_{y}, v_{z} = 0, -(458.507), 0.

8 0
2 years ago
Other questions:
  • Essam is abseiling down a steep cliff. How much gravitational potential energy does he lose for every metre he descends? His mas
    10·2 answers
  • A 4.0 Ω resistor, an 8.0 Ω resistor, and a 12.0 Ω resistor are connected in parallel across a 24.0 V battery. What is the equiva
    14·2 answers
  • Mari places a marble at the top of a ramp and lets it go. It rolls down. At the bottom of the ramp, the marble bumps into a bloc
    7·2 answers
  • A body covers a semicircle of radius 7cm in 5s .find its linear speed
    9·1 answer
  • A hollow cylinder of mass 2.00 kg, inner radius 0.100 m, and outer radius 0.200 m is free to rotate without friction around a ho
    7·1 answer
  • Nerve impulses are carried along axons, the elongated fibers that transmit neural signals. We can model an axon as a tube with a
    5·1 answer
  • Suppose we were to attempt to use a similar machine to measure the charge-to-mass ratio of protons, instead. Suppose, for simpli
    9·1 answer
  • You are at a stop light in your car, stuck behind a red light. Just before the light is supposed to change, a fire engine comes
    13·1 answer
  • A bicyclist travels the first 800 m of a trip 1.4 minutes, the next 500 m in 1.6 minutes, and finishes up the final 1200 m in 2
    6·1 answer
  • Henrietta is going off to her physics class, jogging down the sidewalk at a speed of 4.15 m/s . Her husband Bruce suddenly reali
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!