answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bagirrra123 [75]
2 years ago
7

In a diffraction grating experiment, light of 600 nm wavelength produces a first-order maximum 0.350 mm from the central maximum

on a distant screen. A second monochromatic source produces a third-order maximum 0.870 mm from the central maximum when it passes through the same diffraction grating. What is the wavelength of the light from the second source
Physics
2 answers:
NARA [144]2 years ago
7 0

Answer:

497.143 nm.

Explanation:

Diffraction grating experiment is actually done by passing light through diffraction glasses, the passage of the light causes some patterns which can be seen on the screen. This is because light is a wave and it can spread.

The solution to the question is through the use of the formula in the equation (1) below;

Sin θ = m × λ. ---------------------------------(1).

Where m takes values from 0, 1, 2, ...(that is the diffraction grating principal maxima).

Also, m × λ = dc/ B -------------------------------------------(2).

We are to find the second wavelength, therefore;

λ2 =( m1/c1) × (c2/m2) × λ1 ------------------------(3).

Where c1 and c2 are the order maximum and m = order numbers. Hence;

λ2 = (1/ .350) × (.870/3) × 600 = 497.143 nm.

ASHA 777 [7]2 years ago
7 0

Answer:

∧2 = 497 nm

Explanation:

d = the spacing between every two lines

D = the distance from the grating to the screen

∧1 = wavelength from the fist source

∧2 = wavelength from the second source

The first order maximum y1 = 0.350 mm

The third order maximum y2 = 0.870 mm

∧1 = 600 nm

∧2 = ?

Therefore,

1 × ∧1 = d × y1 / D  

3 × ∧2 = d × y2 / D

divide the ∧2 by ∧1

3∧2/∧1 = y2/y1

∧2 = (y2 × ∧1 )/ 3 × y1

∧2 = (0.870 × 600) / 3 × 0.350

∧2 = 522/1.05

∧2 = 497.142857143

∧2 = 497 nm

You might be interested in
A 250 Hz tuning fork is struck and the intensity at the source is I1 at a distance of one meter from the source. (a) What is the
Zina [86]

Answer:

a) 0.0625 I_1

b) 3.16 m

Explanation:

<u>Concepts and Principles  </u>

The intensity at a distance r from a point source that emits waves of power P is given as:  

I=P/4π*r^2                         (1)

<u>Given Data</u>

f (frequency of the tuning fork) = 250 Hz

I_1 is the intensity at the source a distance r_1 = I m from the source.  

<u>Required Data</u>

- In part (a), we are asked to determine the intensity I_2 a distance r_2 = 4 in from the source.

- In part (b), we are asked to determine the distance from the tuning fork at which the intensity is a tenth of the intensity at the source.  

<u>solution:</u>

(a)  

According to Equation (1), the intensity a distance r is inversely proportional to the distance from the source squared:

I∝1/r^2

Set the proportionality:  

I_1/I_2=(r_2/r_1)^2                                 (2)

Solve for I_2 :  

I_2=I_1(r_2/r_1)^2  

I_2=0.0625 I_1

(b)  

Solve Equation (2) for r_2:  

r_2=(√I_1/I_2)*r_1

where I_2 = (1/10)*I_1:

r_2=(√I_1/1/10*I_1)*r_1

     =3.16 m

3 0
2 years ago
A coworker did not clean his work area before going home this could cause an accident so you quickly clean up the next day you s
defon

Answer:

THE FIRST ONE YOU SHOULD TELL HIM AND THE LAST ONE YOU SHOUDENT DO BECAUSE HE WILL DO IT AGAIN AND EXPECT OTHERS TO CLEAN UP AFTER HIM

Explanation:

5 0
2 years ago
Read 2 more answers
A 1500 kg car traveling at 20 m/s suddenly runs out of gas while approaching the valley shown in the figure. The alert driver im
geniusboy [140]

Answer:

v_f = 17.4 m / s

Explanation:

For this exercise we can use conservation of energy

starting point. On the hill when running out of gas

          Em₀ = K + U = ½ m v₀² + m g y₁

final point. Arriving at the gas station

         Em_f = K + U = ½ m v_f ² + m g y₂

energy is conserved

         Em₀ = Em_f

         ½ m v₀ ² + m g y₁ = ½ m v_f ² + m g y₂

        v_f ² = v₀² + 2g (y₁ -y₂)

         

we calculate

        v_f ² = 20² + 2 9.8  (10 -15)

        v_f = √302

         v_f = 17.4 m / s

8 0
2 years ago
he drawing shows two perpendicular, long, straight wires, both of which lie in the plane of the paper. The current in each of th
AleksandrR [38]

Answer:

The magnitudes of the net magnetic fields at points A and B is 2.66 x 10^{-6} T

Explanation:

Given information :

The current of each wires, I = 4.7 A

dH = 0.19 m

dV = 0.41 m

The magnetic of straight-current wire :

B= μ_{0}I/2πr

where

B = magnetic field (T)

μ_{0} = 1.26 x 10^{-6} (N/A^{2})

I = Current (A)

r = radius (m)

the magnetic field at points A and B is the same because both of wires have the same distance. Based on the right-hand rule, the net magnetic field of A and B is canceled each other (or substracted). Thus,

BH = μ_{0}I/2πr

     = (1.26 x 10^{-6})(4.7)/(2π)(0.19)

     = 4.96 x 10^{-6} T

BV = μ_{0}I/2πr

     = (1.26 x  10^{-6})(4.7)/(2π)(0.41)

     = 2.3 x 10^{-6} T

hence,

the net magnetic field = BH - BV

                                     = 4.96 x 10^{-6} - 2.3 x 10^{-6}

                                     = 2.66 x 10^{-6} T

4 0
2 years ago
How high above the earth's surface is g reduced to 8.80m/^2?
Sladkaya [172]
Gravity changes as the altitude change.<span> The gravitational force is proportional to 1/R2,  where R is the distance from the center of the Earth the radius of earth where gravity is 9.8 m/s^2 is 6400 km this will serve as the zero mark.

g1/(g2) = R2^2/(R1)^2

so we set the constant values to R1 and the unknown distance as x

(9.8)/(8.80) = (6400-x)2/(6400)^2

solving for x we will get 

x = 345.85 km above the earths surface
</span>

<span>Hope my answer would be a great help for you.    
If </span>you have more questions feel free to ask here at Brainly.

<span> </span>


6 0
2 years ago
Read 2 more answers
Other questions:
  • The charged particles in the beams that Thomson studied came from atoms. As these particles moved away from their original atoms
    8·2 answers
  • You travel in a circle, whose circumference is 8 kilometers, at an average speed of 8 kilometers/hour. If you stop at the same p
    9·2 answers
  • The standard acceleration (at sea level and 45◦ latitude) due to gravity is 9.806 65 m/s2. What is the force needed to hold a ma
    10·1 answer
  • A car of mass 1100kg moves at 24 m/s. What is the braking force needed to bring the car to a halt in 2.0 seconds? N
    13·1 answer
  • Two wires with equal lengths are made of pure copper. The diameter of wire A is three times the diameter of wire B. When 8 kg ma
    7·1 answer
  • A cylindrical wire has a resistance R and resistivity ρ. If its length and diameter are BOTH cut in half, what will be its resis
    8·1 answer
  • Two basketball teams are resting during halftime. While they are resting, a truck driver asks them for help pushing his broken d
    15·1 answer
  • Observe: Up until now, all the problems you have solved have involved converting only one unit. However, some conversion problem
    6·1 answer
  • It took a squirrel 0.50\,\text s0.50s0, point, 50, start text, s, end text to run 5.0\,\text m5.0m5, point, 0, start text, m, en
    15·2 answers
  • Felipe walks from the house to his truck on the way to work. He walks 20m to the truck and another 60m in his truck for a total
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!