answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
schepotkina [342]
1 year ago
9

You travel in a circle, whose circumference is 8 kilometers, at an average speed of 8 kilometers/hour. If you stop at the same p

oint you started from, what is your average velocity? 0 kilometers/hour 2 kilometers/hour 4 kilometers/hour 8 kilometers/hour 16 kilometers/hour
Physics
2 answers:
ehidna [41]1 year ago
7 0
Velocity = (displacement) / (time)

Displacement = straight-line distance between start-point and end-point

If you stop at the same point you started from, then
your displacement for the trip is zero, and your average
velocity is also zero.

Schach [20]1 year ago
5 0
Velocity = (displacement) / (time)

Displacement = straight-line distance between start-point and end-point

If you stop at the same point you started from, then
your displacement for the trip is zero, and your average
velocity is also zero.

You might be interested in
A 1700kg rhino charges at a speed of 50.0km/h. what is the magnitude of the average force needed to bring the rhino to a stop in
stepladder [879]
Impulse equals Change in Momentum
F = average applied force = to be determined
Δt = time during which the force is applied = 0.50 s
m = mass = 1,700 kg
Δp = change in momentum = to be determined
Δv = change in velocity = to be determined
v1 = initial velocity = 50.0 km/h = 50,000 m/h = 13.9 m/s
v2 = final velocity = 0.00 km/h = 0.00 m/s

F∙Δt = Δp
F∙Δt = m∙Δv
F∙Δt = m∙(v2 - v1)

F = m∙(v2 - v1) / Δt
F = 1,700 kg∙(0.00 m/s - 13.9 m/s) / 0.50 s
<span>F = -47,222 N The negative sign means that the force vector is </span>
<span>applied AGAINST the momentum vector of the rhinoceros.</span>
7 0
2 years ago
g A particle moves according to a law of motion s = f(t), t ≥ 0, where t is measured in seconds and s in feet. f(t) = 0.01t4 − 0
Margarita [4]

Answer:

Explanation:

If a particle move with time and expressed according to the formula:

f(t) = 0.01t⁴ − 0.03t³

a) Velocity is the change in motion of the particle with respect to time and it is expressed as;

v(t) =\frac{d(f(t))}{dt}

v(t) = 4(0.01)t^{4-1} - 3(0.03)t^{3-1}\\v(t) = 0.04t^3 - 0.09t^2

Hence the velocity of the particle at time t is v(t) = 0.04t^3 - 0.09t^2

b) To calculate the velocity after 1 second, we will substitute t = 1 into the function v(t) in (a) as shown:

v(t) = 0.04t^3 - 0.09t^2\\v(1) = 0.04(1)^3 - 0.09(1)^2\\v(t) = 0.04 - 0.09\\v(t) = -0.05

Hence the velocity after 1second is -0.05

c) The particle is at rest when when the time is zero.

Initially, the body is not moving and the time during this time is 0. Hence the particle is at rest when t = 0second

6 0
1 year ago
If Katie swims from one end of the pool, to the other side, and then swims back to her original spot, her average velocity is ha
Crank

Answer:

false.

Explanation:

Ok, we define average velocity as the sum of the initial and final velocity divided by two.

Remember that the velocity is a vector, so it has a direction.

Then when she goes from the 1st end to the other, the velocity is positive

When she goes back, the velocity is negative

if both cases the magnitude of the velocity, the speed, is the same, then the average velocity is:

AV = (V + (-V))/2  = 0

While the average speed is the quotient between the total distance traveled (twice the length of the pool) and the time it took to travel it.

So we already can see that the average velocity will not be equal to half of the average speed.

The statement is false

4 0
1 year ago
A baggage handler throws a 15 kg suitcase along the floor of an airplane luggage compartment with a speed of 1.2 m/s. The suitca
Hatshy [7]

Answer:

0.0367

Explanation:

The loss in kinetic energy results into work done by friction.

Since kinetic energy is given by

KE=0.5mv^{2}

Work done by friction is given as

W= umgd

Where m is the mass of suitacase, v is velocity of the suitcase, g is acceleration due to gravity, d is perpendicular distance where force is applied and u is coefficient of kinetic friction.

Making u the subject of the formula then we deduce that

u=\frac {v^{2}}{2gd}

Substituting v with 1.2 m/s, d with 2m and taking g as 9.81 m/s2 then

u=\frac {1.2^{2}}{2*9.81*2}=0.0366972477064\approx 0.0367

Therefore, the coefficient of kinetic friction is approximately 0.0367

7 0
2 years ago
A resistor with resistance R and an air-gap capacitor of capacitance C are connected in series to a battery (whose strength is "
blsea [12.9K]

Answer:

a) Q = C*emf

b)  Reduction in electric field strength and electric potential

c) Initial current through the resistor = emf/R

d) The final charge = K*C*emf

Explanation:

a) The resistors and capacitors are connected in series with the battery

Using Kirchoff's voltage law, sum of all voltages in the circuit is zero

Let V_{R} = Voltage dropped across the Resistor

V_{c} = Voltage dropped across the capacitor

Applying KVL;

emf - V_{R}  - V_{c} = 0\\.........................(1)

Since the connection is in series, the same current flow through the circuit

V_{R} = IR\\Q = CV_{c} \\V_{c} = Q/C

Putting V_{c} and V_{R} into equation (1)

emf - IR - Q/C = 0

At the final charge, the capacitor in fully charged, and current drops to zero due to equilibrium

I = 0A\\emf = Q/C\\Q = C* emf

b) Current starts running through the plate because as the sheet of plastic is inserted between the plates both the electric field intensity and the electric potential reduces. The charge also reduces, then current flows

c) The current through the resistor is the current through the entire circuit ( series connection)

I = I_{o} \exp(\frac{-t}{RC} )\\At time the initial time, t\\t = 0\\ I_{o} = \frac{emf}{R} \\

Putting the values of t and I₀ into the formula for I written above

I = \frac{emf}{R} \exp(0)\\I = \frac{emf}{R}

d) NB: The initial charge on the capacitor = C * emf

The final charge will be:

Q = K* Q_{initial} \\Q_{initial}  = C *emf\\Q_{final}  = KCemf

4 0
2 years ago
Other questions:
  • Sachi wants to throw a water balloon to knock over a target and win a prize. The target will only fall over if it is hit with a
    8·2 answers
  • What is the total energy released when 9.11 x10^-31 ki?
    7·1 answer
  • A car is traveling in a race.The car went from initial velocity of 35m/s to the final velocity of 65m/s in 5 seconds what was th
    9·2 answers
  • A car with an initial velocity of 16.0 meters per second east slows uniformly to 6.0 meters per second east in 4.0 seconds. What
    8·1 answer
  • B. A hydraulic jack has a ram of 20 cm diameter and a plunger of 3 cm diameter. It is used for lifting a weight of 3 tons. Find
    13·1 answer
  • A 1 200-kg car traveling initially at vCi 5 25.0 m/s in an easterly direction crashes into the back of a 9 000-kg truck moving i
    14·1 answer
  • Suppose the circumference of a bicycle wheel is 2 meters. If it rotates at 1 revolution per second when you are riding the bicyc
    9·1 answer
  • Find the lowest two frequencies that produce a maximum sound intensity at the positions of Moe and Curly.
    5·1 answer
  • Two students are discussing how the speed of the car compares to the speed of the truck when both vehicles are in front of the h
    15·1 answer
  • If the ball is 0.60 mm from her shoulder, what is the tangential acceleration of the ball? This is the key quantity here--it's a
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!