Answer: Hello your question is incomplete attached below is the complete question
Ra = 1132 N
Rb = 522.6 N
Pa = 679.7 N
Explanation:
To determine the scalar components Ra
therefore : Ra =
= 1132 N
To determine the scalar component Rb

therefore : Rb =
= 522.6 N
To determine the orthogonal projection Pa of R onto
Pa = 750 cos
= 679.7 N
Answer:
density is
Mg/µL
Explanation:
given data
density of nuclear =
kg/m³
1 ml = 1 cm³
to find out
density of nuclear matter in Mg/µL
solution
we know here
1 Mg = 1000 kg
so
1 m³ is equal to
cm³
and here 1 cm³ is equal to 1 mL
so we can say 1 mL is equal to 10³ µL
so by these we can convert density
density =
kg/m³
density =
kg/m³ ×
Mg/µL
density =
Mg/µL
Answer:

Explanation:
During the exchange of applied force, thermal energy is generated by the friction that exists between the ground and the tire.
Said force according to the statement is the reaction of half the force on the rear tire. In this way the normal force acted is,

The work done is given by the friction force and the distance traveled,

Where ![\mu_k [/ tex] is the coefficient of kinetic frictionN is the normal force previously found d is the distance traveled,Replacing,[tex]W_f = (0.80)(441)(0.42)](https://tex.z-dn.net/?f=%20%5Cmu_k%20%5B%2F%20tex%5D%20is%20the%20coefficient%20of%20kinetic%20friction%3C%2Fp%3E%3Cp%3EN%20is%20the%20normal%20force%20previously%20found%20d%20is%20the%20distance%20traveled%2C%3C%2Fp%3E%3Cp%3EReplacing%2C%3C%2Fp%3E%3Cp%3E%5Btex%5DW_f%20%3D%20%280.80%29%28441%29%280.42%29)
The thermal energy released through the work done is,

Answer:
The gravitational force exerted on the object is 75 N (answer D)
Explanation:
Hi there!
The gravitational force is calculated as follows:
F = m · g
Where:
F = force of gravity.
m = mass of the object.
g = acceleration due to gravity (unknown).
For a falling object moving in a straight line, its height at a given time can be calculated using the following equation:
y = y0 + v0 · t + 1/2 · a · t²
Where:
y = position at time t.
y0 = initial position.
v0 = initial velocity.
t = time.
g = acceleration due to gravity.
Let´s place the origin of the frame of reference at the point where the object is released so that y0 = 0. Let´s also consider the downward direction as negative.
Then, after 2 seconds, the height of the object will be -30 m:
y = y0 + v0 · t + 1/2 · g · t²
-30 m = 0 m + 0 m/s · 2 s + 1/2 · g · (2 s)²
-30 m = 1/2 · g · 4 s²
-30 m = 2 s ² · g
-30 m/2 s² = g
g = -15 m/s²
Then, the magnitude of the gravitational force will be:
F = m · g
F = 5 kg · 15 m/s²
F = 75 N
The gravitational force exerted on the object is 75 N (answer D)
Have a nice day!
Answer:

Explanation:
Let m is the mass of both cars. The first car is moving with speed v and the other car is moving with speed 2v. The only force acting on both cars is the centripetal force.
For faster car on the road,

v = 2v

..........(1)
For the slower car on the road,
............(2)
Equation (1) becomes,


So, the frictional force required to keep the slower car on the road without skidding is one fourth of the faster car.