Answer:
The gravitational potential energy of a system is -3/2 (GmE)(m)/RE
Explanation:
Given
mE = Mass of Earth
RE = Radius of Earth
G = Gravitational Constant
Let p = The mass density of the earth is
p = M/(4/3πRE³)
p = 3M/4πRE³
Taking for instance,a very thin spherical shell in the earth;
Let r = radius
dr = thickness
Its volume is given by;
dV = 4πr²dr
Since mass = density* volume;
It's mass would be
dm = p * 4πr²dr
The gravitational potential at the center due would equal;
dV = -Gdm/r
Substitute (p * 4πr²dr) for dm
dV = -G(p * 4πr²dr)/r
dV = -G(p * 4πrdr)
The gravitational potential at the center of the earth would equal;
V = ∫dV
V = ∫ -G(p * 4πrdr) {RE,0}
V = -4πGp∫rdr {RE,0}
V = -4πGp (r²/2) {RE,0}
V = -4πGp{RE²/2)
V = -4Gπ * 3M/4πRE³ * RE²/2
V = -3/2 GmE/RE
The gravitational potential energy of the system of the earth and the brick at the center equals
U = Vm
U = -3/2 GmE/RE * m
U = -3/2 (GmE)(m)/RE
Answer:
B. Trial 2
Explanation:
Trial 2, because the student’s finger applied the largest force to the sensor.
Because the trial 2 student finger applied to largest force.
Color <span>is a physical property of all visible light determined by the light's frequency and visible to the human eye.</span>
Answer: 0.98m
Explanation:
P = -74 mm Hg = 9605 Pa = 9709N/m^2
= 9605 kg m/s^2/m^2
density of water: rho = 1 g/cc = 1 (10^-3 kg)/(10^-2 m)^-3 = 1000 kg/m^3
Pressure equation: P = rho g h
h = P/(rho g)
h = (9605 kg/m/s^2) / (1000 kg/m^3) / (9.8 m/s^2)
h = 0.98 m
0.98m is the maximum depth he could have been.
The speed is 0.956 m / s.
<u>Explanation</u>:
The kinetic energy is equal to the product of half of an object's mass, and the square of the velocity.
K.E = 1/2
m

where K.E represents the kinetic energy,
m represents the mass,
v represents the velocity.
K.E = 1/2
m

1.10
10^42 = 1/2
3.26
10^31

= (1.10
10^42
2) / (3.26
10^31)
v = 0.956 m / s.