<span>Frequency = 394 Hz
Length of the string L = 81 cm = 0.81 m
Mass of the string = 0.002 kg
Tension T = ?
Wave length of the string is two times the length.
n x lambda = 2L, we also have lambda = vt = v / f, t is time period and given n = 1.
Therefore L = v / 2f => v = 2fL
Deriving form force equation, force here is tension T so
v = squareroot of (TL/m) hence
2fL = squareroot of (TL/m) => 4 x f^2 x L^2 = (T x L) / m => T = 4 x f^2 x L x m
T = 4 x 0.81 x (394)^2 x 0.002 = 4 x 0.81 x 155236 x 0.002
T = 1005.9 N = 1.006 x 10^3 N</span>
Myofibrils are composed of long proteins such as actin, myosin, and titin, and other proteins that hold them together. These proteins are organized into thin filaments and thick filaments, which repeat along the length of the myofibril in sections called sarcomeres. Muscles contract by sliding the thin (actin) and thick (myosin) filaments along each other.
Answer: A) 
Explanation:
The equation for the moment of inertia
of a sphere is:
(1)
Where:
is the moment of inertia of the planet (assumed with the shape of a sphere)
is the mass of the planet
is the radius of the planet
Isolating
from (1):
(2)
Solving:
(3)
Finally:
Therefore, the correct option is A.
Potential energy at any point is (M G H). On the way down, only H changes. So halfway down, half of the potential energy remains, and the other half has turned to kinetic energy. Half of the (M G H) it had at the tpp is (0.5 x 9.8 x 10) = 49 joules.
13200N
Explanation:
Given parameters:
Mass = 1100kg
Velocity = 24m/s
time = 2s
unknown:
Braking force = ?
Solution:
The braking force is the force needed to stop the car from moving.
Force = ma = 
m is the mass of the car
v is the velocity
t is the time taken
Force =
= 13200N
Learn more:
Force brainly.com/question/4033012
#learnwithBrainly