Answer:
Time taken by the leaf to displace by 1.0 m distance is
seconds
Explanation:
As we know that initial velocity of the leaf is given as

now the acceleration upwards for the leaf is

The displacement of leaf in upward direction is
d = 1 m
so now we have


seconds
Answer:i=300 mA
Explanation:
Given
inductance(L)=40 mH
Resistor(R)=
Voltage(V)=15 V
Time constant(
)=

current 

Current as a function of time is given by

i= 299.95 mA
B. velocity at position x, velocity at position x=0, position x, and the original position
In the equation
=
+2 a x (x - x₀)
= velocity at position "x"
= velocity at position "x = 0 "
x = final position
= initial position of the object at the start of the motion
The force of attraction between the two particles will remain the same, because when mass is doubled, force of attraction is doubled. However, when distance between their centers is doubled, then force of attraction is halved. As such double and half cancel out each other and force of attraction remains the same.
= Heat released to cold reservoir
= Heat released to hot reservoir
= maximum amount of work
= temperature of cold reservoir
= temperature of hot reservoir
we know that

eq-1
maximum work is given as
=
- 
using eq-1
=
- 