Answer:
5cm east& 1cm west from A
Explanation:
https://brainly.ph/question/2753392
Answer:
The frequency of the photon decreases upon scattering
Explanation:
Here we note that when a photon is scattered by a charged particle, it is referred to as Compton scattering.
Compton scattering results in a reduction of the energy of the photon and hence an increase in the wavelength (from λ to λ') of the photon known as Compton effect.
Therefore, since the wavelength increases, we have from
λf = λ'f' = c
f = c/λ
Where:
f and f' = The frequency of the motion of the photon before and after the scattering
c = Speed of light (constant)
We have that the frequency, f, is inversely proportional to the wavelength, λ as follows;
f = c/λ
As λ = increases, and c is constant, f decreases, therefore, the frequency of the photon decreases upon scattering.
Answer:
number of electrons = 2.18*10^18 e
Explanation:
In order to calculate the number of electrons that move trough the second wire, you take into account one of the Kirchoff's laws. All the current that goes inside the junction, has to go out the junction.
Then, if you assume that the current of the wire 1 and 3 go inside the junction, then, all this current have to go out trough the second junction:
(1)
i1 = 0.40 A
i2 = 0.75 A
you solve the equation i3 from the equation (1):

Next, you take into account that 1A = 1C/s = 6.24*10^18
Then, you have:

The number of electrons that trough the wire 3 is 2.18*10^18 e/s
Complete Question
Part of the question is shown on the first uploaded image
The rest of the question
What is (Fnet3)x, the x-component of the net force exerted by these two charges on a third charge q3 = 55.0 nC placed between q1 and q2 at x3 = -1.220 m ? Your answer may be positive or negative, depending on the direction of the force. Express your answer numerically in newtons to three significant figures.
Answer:
The net force exerted on the third charge is
Explanation:
From the question we are told that
The third charge is 
The position of the third charge is 
The first charge is 
The position of the first charge is 
The second charge is 
The position of the second charge is
The distance between the first and the third charge is


The force exerted on the third charge by the first is

Where k is the coulomb's constant with a value 
substituting values
The distance between the second and the third charge is


The force exerted on the third charge by the first is mathematically evaluated as
substituting values

The net force is
substituting values
