Answer:
v_avg = 2.9 cm/s
Explanation:
The average velocity of the object is the sum of the distance of all its trajectories divided the time:

x_all is the total distance traveled by the object. In this case you have that the object traveled in the first trajectory 165cm-15cm = 150cm, and in the second one, 165cm - 25cm = 140cm
Then, x_all = 150cm + 140cm = 290cm
The average velocity is, for t = 100s

hence, the average velocity of the object in the total trajectory traveled is 2.9 cm/s
Answer:
Total number of electrons

electrons removed from each sphere

Fraction of electrons transferred is given as

Explanation:
As we know that moles is defined as



so number of atoms of Al in each sphere is given as


Now number of electrons in each atom is given as
atomic number = number of electrons in each atom = 13
total number of electrons in each sphere is


Also we know that force of attraction between them is given as



now we have




Fraction of electrons transferred is given as


Answer: 14.52*10^6 m/s
Explanation: In order to explain this problem we have to consider the energy conservation for the electron within the coaxial cylidrical wire.
the change in potential energy for the electron; e*ΔV is equal to energy kinetic gained for the electron so:
e*ΔV=1/2*m*v^2 v^=(2*e*ΔV/m)^1/2= (2*1.6*10^-19*600/9.1*10^-31)^1/2=14.52 *10^6 m/s
Answer:5.17 m/s
Explanation:
Given
let u be the speed at cliff initial point
range over cliff is 1.45 m
and range of projectile is given by


u=3.77 m/s
Conserving Energy

Kinetic energy=Kinetic energy +Potential energy gained
Let v be the initial velocity





Answer:
<em>0.45 mm</em>
Explanation:
The complete question is
a certain fuse "blows" if the current in it exceeds 1.0 A, at which instant the fuse melts with a current density of 620 A/ cm^2. What is the diameter of the wire in the fuse?
A) 0.45 mm
B) 0.63 mm
C.) 0.68 mm
D) 0.91 mm
Current in the fuse is 1.0 A
Current density of the fuse when it melts is 620 A/cm^2
Area of the wire in the fuse = I/ρ
Where I is the current through the fuse
ρ is the current density of the fuse
Area = 1/620 = 1.613 x 10^-3 cm^2
We know that 10000 cm^2 = 1 m^2, therefore,
1.613 x 10^-3 cm^2 = 1.613 x 10^-7 m^2
Recall that this area of this wire is gotten as
A = 
where d is the diameter of the wire
1.613 x 10^-7 = 
6.448 x 10^-7 = 3.142 x 
=
d = 4.5 x 10^-4 m = <em>0.45 mm</em>